folder = "", extra = data['extra']) else: if algorithm == "REC": crossed_test = functions.convert_crossed( filename = args.test, length = length, output = "test_crossed_" + args.output, features = data['rec_crossed_features'], positive = True, folder = "", extra = data['extra']) ric_test = functions.convert_ric(filename = args.test, length = length, output = "test_ric_" + args.output, folder = "") #Apply algorithms if algorithm == "CROSSED": crossed_output = functions.run_crossed(filename=crossed_test, model=os.path.join(model, data['crossed_model']), output="test_crossed_results_" + args.output, base_folder=base_folder, folder="") else: if algorithm != "rRIC": ric_output = functions.run_ric(test_file = ric_test, length = length, base_folder = base_folder, training_file = os.path.join(os.path.join( base_folder, "Data"), "classic_mouse_" + str( length-16) + ".fasta"), output = "test_ric_results_" + args.output, folder="") if algorithm != "RIC": rric_output = functions.run_ric(test_file = ric_test, length = length, base_folder = base_folder, training_file = os.path.join(model, data['ric_template']), output = "test_rric_results_" + args.output, folder = "")
output="train_crossed_positives.fasta", features=features, positive=True, folder=unique, extra=extra) crossed_negatives = functions.convert_crossed( filename=args.negative, length=length, output="train_crossed_negatives.fasta", features=features, positive=False, folder=unique, extra=extra) #Train CRoSSeD model model = functions.train_crossed(positive=crossed_positives, negative=crossed_negatives, model="CRoSSeD_model", unique=unique, base_folder=base_folder) #Aply CRoSSeD to input data crossed_positives_output = functions.run_crossed( filename=crossed_positives, model=model, output="test_crossed_positives", base_folder=base_folder, folder=unique) crossed_negatives_output = functions.run_crossed( filename=crossed_negatives, model=model, output="test_crossed_negatives", base_folder=base_folder, folder=unique) #Read scores crossed_positive_scores = functions.read_crossed( filename=crossed_positives_output, original=args.positive, length=length) crossed_negative_scores = functions.read_crossed( filename=crossed_negatives_output, original=args.negative, length=length) crossed_value_fdr = functions.get_threshold_unique( positive = crossed_positive_scores, negative = crossed_negative_scores,