コード例 #1
0
plt.yticks(np.arange(0, 24 * 7, 24))
plt.xlabel(r'Time (hours)')
plt.ylabel(r'Time (hours)')

Sigma_pm10 = functions.covmat(acf_pm10, time[0:24 * 7])

plt.figure(figsize=(5, 4))
plt.imshow(Sigma_pm10, cmap='gray')
plt.colorbar()
plt.xticks(np.arange(0, 24 * 7, 24))
plt.yticks(np.arange(0, 24 * 7, 24))
plt.xlabel(r'Time (hours)')
plt.ylabel(r'Time (hours)')

xcf_no2 = signal.correlate(no2[0], no2[2])
Sigma_no2 = functions.xcovmat(xcf_no2, time[0:24], time[0:12])

plt.figure(figsize=(5, 4))
plt.imshow(Sigma_no2, cmap='gray')
plt.colorbar()
plt.xticks(np.arange(0, 24, 24))
plt.yticks(np.arange(0, 24, 24))
plt.xlabel(r'Time (hours)')
plt.ylabel(r'Time (hours)')

#xcf_no2_pm10_11 = signal.correlate(no2[0], pm10[0])
#Sigma_no2_pm10_11 = functions.xcovmat(xcf_no2_pm10_11, time[0:24*7], time[0:24*7])
#
#plt.figure(figsize=(5,4))
#plt.imshow(Sigma_no2_pm10_11, cmap='gray')
#plt.colorbar()
コード例 #2
0
        this_train_index = np.arange(TOTAL_SIZE - (iteration + 1) * BATCH_SIZE,
                                     TOTAL_SIZE - iteration * BATCH_SIZE)
        this_time_train = time_train[this_train_index]
        this_data_train = data_train[:, this_train_index]

        # Marginal distribution of the k-th segment of data
        for i in range(5):
            this_mu_train[i, :] = functions.meanvec(mean_busday[i, :],
                                                    mean_holiday[i, :],
                                                    this_time_train)

        # Conditional distribution of the k-th segment of data
        for i in range(5):
            this_cov_train[i, :, :] = functions.covmat(acf[i, :],
                                                       this_time_train)
            this_cov_train_test[i, :, :] = functions.xcovmat(
                acf[i, :], this_time_train, time_test)
            this_cov_test_train[i, :, :] = np.transpose(
                this_cov_train_test[i, :, :])

            this_H[i, :, :] = np.dot(this_cov_train_test[i, :, :],
                                     np.linalg.inv(cov_test_prior[i, :, :]))

            this_mu_train_given_test[i, :] = this_mu_train[i, :] + np.dot(
                this_H[i, :, :],
                (this_mu_test_prior[i, :] - mu_test_prior[i, :]))
            this_cov_train_given_test[
                i, :, :] = this_cov_train[i, :, :] - np.dot(
                    this_H[i, :, :], this_cov_test_train[i, :, :])

            # Update the posterior
            this_G[i, :, :] = this_cov_train_given_test[i, :, :] + np.dot(