コード例 #1
0
ファイル: functions_obj.py プロジェクト: TOPDyn/TOPDyn
def kinetic_local(omega_par, disp_vector, passive_el, ind_passive, coord, connect, E, v, rho, const_func):
    """ Calculates the local kinetic energy function.

    Args:
        omega_par (:obj:`float`): 2 * pi * frequency.
        disp_vector (:obj:`numpy.array`): Displacement.
        passive_el (:obj:`numpy.array`, optional): Passive element nodes.
        ind_passive (:obj:`numpy.array`, optional): Index of passive elements.
        coord (:obj:`numpy.array`, optional): Coordinates of the element.
        connect (:obj:`numpy.array`, optional): Element connectivity.
        E (:obj:`float`, optional): Elastic modulus.
        v (:obj:`float`, optional): Poisson's ratio. 
        rho (:obj:`float`, optional): Density.

    Returns:
        Local kinetic energy on the logarithmic scale and the non-logarithmic local kinetic energy.
    """
    ki = 0
    for i, ind_el in enumerate(ind_passive):
        _, Me = fc.matricesQ4(passive_el[i], coord, connect, E, v, rho)
        aux = disp_vector[ind_el].conj().reshape(1, -1)@Me@disp_vector[ind_el]
        ki+=aux
    fvirg = ((omega_par**2)/4) * ki[0].real
    #Log Scale
    f = const_func + 10 * np.log10(fvirg)
    return f, fvirg
コード例 #2
0
ファイル: functions_obj.py プロジェクト: TOPDyn/TOPDyn
def elastic_potential_local(disp_vector, passive_el, ind_passive, coord, connect, E, v, rho, const_func):
    """ Calculates the local elastic potential energy function.

    Args:
        disp_vector (:obj:`numpy.array`): Displacement.
        passive_el (:obj:`numpy.array`, optional): Passive element nodes.
        ind_passive (:obj:`numpy.array`, optional): Index of passive elements.
        coord (:obj:`numpy.array`, optional): Coordinates of the element.
        connect (:obj:`numpy.array`, optional): Element connectivity.
        E (:obj:`float`, optional): Elastic modulus.
        v (:obj:`float`, optional): Poisson's ratio. 
        rho (:obj:`float`, optional): Density.

    Returns:
        Local elastic potential energy on the logarithmic scale and the non-logarithmic local elastic potential energy.
    """
    ep2 = 0
    for i, ind_el in enumerate(ind_passive):
        Ke, _ = fc.matricesQ4(passive_el[i], coord, connect, E, v, rho)
        aux = disp_vector[ind_el].reshape(1, -1).conjugate()@Ke@disp_vector[ind_el]
        ep2+=aux
    fvirg = (1/4) * ep2[0].real
    #Log Scale
    f = const_func + 10 * np.log10(fvirg)
    return f, fvirg
コード例 #3
0
def lambda_local_ep(ngl, ind_passive, passive_el, disp_vector, dyna_stif,
                    coord, connect, E, v, rho):
    """ Calculates the lambda parameter of the local elastic potential energy function.

    Args:
        ngl (:obj:`int`): Degrees of freedom.
        ind_passive (:obj:`numpy.array`): Index of passive elements.
        passive_el (:obj:`numpy.array`): Passive element nodes.
        disp_vector (:obj:`numpy.array`): Displacement vector.
        dyna_stif (:obj:`numpy.array`): Dynamic stiffness matrix.
        omega_par (:obj:`float`): 2 * pi * frequency.
        coord (:obj:`numpy.array`): Coordinates of the element.
        connect (:obj:`numpy.array`): Element connectivity.
        E (:obj:`float`): Elastic modulus.
        v (:obj:`float`): Poisson's ratio.
        rho (:obj:`float`): Density.

    Returns:
        Lambda parameter solution.
    """
    aux1 = np.zeros(ngl, dtype=complex)
    fadj = 0
    for i, el in enumerate(passive_el):
        Ke, _ = fc.matricesQ4(el, coord, connect, E, v, rho)
        aux1[ind_passive[i]] = Ke @ disp_vector[ind_passive[i]].conjugate()
        fadj += aux1
        aux1[:] = 0
    fadj *= -1 / 2
    lam = spsolve(dyna_stif, fadj)
    return lam
コード例 #4
0
def derivative_local_ep(passive_el, lam, ind_dofs, xval, disp_vector, connect,
                        coord, E, v, rho, x_min_k, x_min_m, omega_par, alpha,
                        beta, p_par, q_par):
    """ Calculates the derivative of the local elastic potential energy function.

    Args:
        passive_el (:obj:`numpy.array`): Passive element nodes.
        lam (:obj:`float`): Lambda parameter.
        ind_dofs (:obj:`numpy.array`, optional): TODO
        xval (:obj:`numpy.array`): Indicates where there is mass.
        disp_vector (:obj:`numpy.array`): Displacement vector.
        connect (:obj:`numpy.array`): Element connectivity.
        coord (:obj:`numpy.array`): Coordinates of the element.
        E (:obj:`float`): Elastic modulus.
        v (:obj:`float`): Poisson's ratio. 
        rho (:obj:`float`): Density.
        x_min_m (:obj:`float`): Minimum relative densities to mass. 
        x_min_k (:obj:`float`): Minimum relative densities to stiffness.
        omega_par (:obj:`float`): 2 * pi * frequency.
        alpha (:obj:`float`): Damping coefficient proportional to mass.
        beta (:obj:`float`): Damping coefficient proportional to stiffness.
        p_par (:obj:`int`): Penalization power to stiffness.
        q_par (:obj:`int`): Penalization power to mass.       
        
    Returns:
        Derivative of the local elastic potential energy function.
    """
    deriv_f = np.empty((len(connect), 1), dtype=complex)

    for el in range(len(connect)):
        Ke, Me = fc.matricesQ4(el, coord, connect, E, v, rho)
        ind = ind_dofs[el, :]
        dKe = p_par * (xval[el]**(p_par - 1)) * (1 - x_min_k) * Ke
        dCe = alpha * Me + beta * dKe

        if xval[el] > 0.1:
            dMe = q_par * (xval[el]**(q_par - 1)) * (1 - x_min_m) * Me
        else:
            dMe = ((9 * 3.512e7 * xval[el]**8 - 10 * 2.081e8 * xval[el]**9) *
                   (1 - x_min_m)) * Me
        dKed = dKe + omega_par * 1j * dCe - (omega_par**2) * dMe

        if el in passive_el:
            deriv_f[el, 0] = (1 / 4) * (
                (disp_vector[ind].reshape(1, -1).conjugate() @ dKe
                 @ disp_vector[ind]) +
                (lam[ind].reshape(1, -1) @ dKed @ disp_vector[ind]).real)[0]
        else:
            deriv_f[el, 0] = ((
                lam[ind].reshape(1, -1) @ dKed @ disp_vector[ind]).real)[0]
    return deriv_f
コード例 #5
0
def derivative_R(coord, connect, E, v, rho, alpha, beta, omega_par, p_par,
                 q_par, x_min_m, x_min_k, xval, disp_vector, lam, fvirg,
                 kinetic_e):
    """ Calculates the derivative of the strain-to-kinetic function.

    Args:
        coord (:obj:`numpy.array`): Coordinates of the element.
        connect (:obj:`numpy.array`): Element connectivity.
        E (:obj:`float`): Elastic modulus.
        v (:obj:`float`): Poisson's ratio.
        rho (:obj:`float`): Density.
        alpha (:obj:`float`): Damping coefficient proportional to mass.
        beta (:obj:`float`): Damping coefficient proportional to stiffness.
        omega_par (:obj:`float`): 2 * pi * frequency
        p_par (:obj:`float`): Penalization power to stiffness. 
        q_par (:obj:`float`): Penalization power to mass.
        x_min_m (:obj:`float`): Minimum relative densities to mass. 
        x_min_k (:obj:`float`): Minimum relative densities to stiffness. 
        xval (:obj:`numpy.array`): Indicates where there is mass.
        disp_vector (:obj:`numpy.array`): Displacement vector.
        lam (:obj:`float`): Lambda parameter.
        fvirg (:obj:`float`): Strain-to-kinetic function.
        kinetic_e (:obj:`float`): Kinetic energy function.

    Returns:
        Derivative of the strain-to-kinetic function function.
    """
    deriv_R = np.empty((len(connect), 1), dtype=complex)
    dofs = 2
    ind_dofs = (np.array([
        dofs * connect[:, 1] - 1, dofs * connect[:, 1], dofs * connect[:, 2] -
        1, dofs * connect[:, 2], dofs * connect[:, 3] - 1,
        dofs * connect[:, 3], dofs * connect[:, 4] - 1, dofs * connect[:, 4]
    ],
                         dtype=int) - 1).T
    for el in range(len(connect)):
        Ke, Me = fc.matricesQ4(el, coord, connect, E, v, rho)
        ind = ind_dofs[el, :]
        dKe = p_par * (xval[el]**(p_par - 1)) * (1 - x_min_k) * Ke
        dCe = alpha * Me + beta * dKe
        if xval[el] > 0.1:
            dMe = q_par * (xval[el]**(q_par - 1)) * (1 - x_min_m) * Me
        else:
            dMe = ((9 * 3.512e7 * xval[el]**8 - 10 * 2.081e8 * xval[el]**9) *
                   (1 - x_min_m)) * Me
        dKed = dKe + omega_par * 1j * dCe - (omega_par**2) * dMe

        deriv_R[el, 0] = 1/(4*kinetic_e) * (disp_vector[ind].conjugate()@(dKe - (omega_par**2)*fvirg*dMe)@disp_vector[ind]).real + \
                        (lam[ind]@dKed@disp_vector[ind]).real
    return deriv_R
コード例 #6
0
def derivative_input_power(coord, connect, E, v, rho, alpha, beta, omega_par,
                           p_par, q_par, x_min_m, x_min_k, xval, disp_vector):
    """ Calculates the derivative of the input power function.
    
    Args:
        coord (:obj:`numpy.array`): Coordinates of the element.
        connect (:obj:`numpy.array`): Element connectivity.
        E (:obj:`float`): Elastic modulus.
        v (:obj:`float`): Poisson's ratio.
        rho (:obj:`float`): Density.
        alpha (:obj:`float`): Damping coefficient proportional to mass.
        beta (:obj:`float`): Damping coefficient proportional to stiffness.
        omega_par (:obj:`float`): 2 * pi * frequency
        p_par (:obj:`float`): Penalization power to stiffness. 
        q_par (:obj:`float`): Penalization power to mass.
        x_min_m (:obj:`float`): Minimum relative densities to mass. 
        x_min_k (:obj:`float`): Minimum relative densities to stiffness. 
        xval (:obj:`numpy.array`): Indicates where there is mass.
        disp_vector (:obj:`numpy.array`): Displacement vector.
        
    Returns:
        Derivative of the input power function.
    """
    deriv_f = np.empty((len(connect), 1))
    dofs = 2
    ind_dofs = (np.array([
        dofs * connect[:, 1] - 1, dofs * connect[:, 1], dofs * connect[:, 2] -
        1, dofs * connect[:, 2], dofs * connect[:, 3] - 1,
        dofs * connect[:, 3], dofs * connect[:, 4] - 1, dofs * connect[:, 4]
    ],
                         dtype=int) - 1).T
    for el in range(len(connect)):
        Ke, Me = fc.matricesQ4(el, coord, connect, E, v, rho)
        ind = ind_dofs[el, :]
        dKe = p_par * (xval[el]**(p_par - 1)) * (1 - x_min_k) * Ke
        dCe = alpha * Me + beta * dKe
        if xval[el] > 0.1:
            dMe = q_par * (xval[el]**(q_par - 1)) * (1 - x_min_m) * Me
        else:
            dMe = ((9 * 3.512e7 * xval[el]**8 - 10 * 2.081e8 * xval[el]**9) *
                   (1 - x_min_m)) * Me
        dKed = dKe + omega_par * 1j * dCe - (omega_par**2) * dMe
        a = 1j * (disp_vector[ind].reshape(1, 8) @ dKed
                  @ disp_vector[ind].reshape(8, 1))[0, 0]
        deriv_f[el, 0] = -0.5 * omega_par * a.real
    return deriv_f