def __init__(self, size_vocab, size_embed, size, size_out, depth, gru_activation=clipped_rectify, visual_encoder=StackedGRUH0, visual_activation=linear, dropout_prob=0.0): autoassign(locals()) self.Embed = Embedding(self.size_vocab, self.size_embed) self.Visual = Visual(self.size_embed, self.size, self.size_out, self.depth, encoder=self.visual_encoder, gru_activation=self.gru_activation, visual_activation=self.visual_activation, dropout_prob=self.dropout_prob) self.LM = StackedGRUH0(self.size_embed, self.size, self.depth, activation=self.gru_activation, dropout_prob=self.dropout_prob) self.ToTxt = Dense(self.size, self.size_vocab) # map to vocabulary
def __init__(self, size_vocab, size_embed, size, size_out, depth, depth_spec=1, visual_encoder=StackedGRUH0, gru_activation=clipped_rectify, visual_activation=linear, dropout_prob=0.0): autoassign(locals()) self.Embed = Embedding(self.size_vocab, self.size_embed) self.Shared = StackedGRUH0(self.size_embed, self.size, self.depth, activation=self.gru_activation, dropout_prob=self.dropout_prob) self.Visual = Visual(self.size, self.size, self.size_out, self.depth_spec, encoder=self.visual_encoder, gru_activation=self.gru_activation, visual_activation=self.visual_activation, dropout_prob=self.dropout_prob) self.LM = StackedGRU(self.size, self.size, self.depth_spec, activation=self.gru_activation, dropout_prob=self.dropout_prob) self.ToTxt = Dense(self.size, self.size_embed) # try direct softmax
def __init__(self, size_vocab, size_embed, size, depth): autoassign(locals()) self.Embed = Embedding(self.size_vocab, self.size_embed) self.GRU = StackedGRUH0(self.size_embed, self.size, self.depth, activation=clipped_rectify)
def __init__(self, size_vocab, size_embed, size, size_out, depth, out_depth=1, # FIXME USE THIS PARAM gru_activation=tanh, visual_activation=linear, dropout_prob=0.0): autoassign(locals()) self.Embed = Embedding(self.size_vocab, self.size_embed) self.Encode = StackedGRUH0(self.size_embed, self.size, self.depth, activation=self.gru_activation, dropout_prob=self.dropout_prob) self.DecodeT = StackedGRU(self.size_embed, self.size, self.depth, activation=self.gru_activation, dropout_prob=self.dropout_prob) self.PredictT = Dense(size_in=self.size, size_out=self.size_embed) self.DecodeV = Dense(self.size, self.size_out) self.params = params(self.Embed, self.DecodeT, self.PredictT, self.DecodeV)
def __init__(self, size_vocab, size_embed, size, size_out, depth, textual, out_depth=1, gru_activation=tanh, visual_activation=linear, dropout_prob=0.0): autoassign(locals()) self.Embed = Embedding(self.size_vocab, self.size_embed) self.Visual = Visual(self.size_embed, self.size, self.size_out, self.depth, out_depth=self.out_depth, gru_activation=self.gru_activation, dropout_prob=self.dropout_prob) self.Textual = textual(self.size_embed, self.size, self.size_out, self.depth, gru_activation=self.gru_activation, dropout_prob=self.dropout_prob) self.params = params(self.Embed, self.Visual, self.Textual)