def adjoint_reduce(adj_redop, adj_binop, out_adj, op, arg, reduced_vars): assert adj_binop is op or (op, adj_binop) in ops.DISTRIBUTIVE_OPS if op is adj_redop: # XXX using a hack to simulate "expand" return {arg: adj_binop(out_adj, Binary(ops.PRODUCT_INVERSES[adj_binop], arg, arg))} elif op is adj_binop: # plate! out = arg.reduce(op, reduced_vars) return {arg: adj_binop(out_adj, Binary(ops.PRODUCT_INVERSES[op], out, arg))}
def adjoint_reduce(out_adj, out, op, arg, reduced_vars): assert op in (ops.logaddexp, ops.add) if op is ops.logaddexp: return {arg: out_adj + (arg * 0.)} # XXX hack to simulate "expand" elif op is ops.add: # plate! return {arg: out_adj + Binary(ops.safesub, out, arg)}
def adjoint_cat(adj_redop, adj_binop, out_adj, name, parts, part_name): in_adjs = {} start = 0 size = sum(part.inputs[part_name].dtype for part in parts) for i, part in enumerate(parts): if part_name in out_adj.inputs: in_adjs[part] = out_adj(**{name: Slice(name, start, start + part.inputs[part_name].dtype, 1, size)}) start += part.inputs[part_name].dtype else: in_adjs[part] = adj_binop(out_adj, Binary(ops.PRODUCT_INVERSES[adj_binop], part, part)) return in_adjs
def test_bart(analytic_kl): global call_count call_count = 0 with interpretation(reflect): q = Independent( Independent( Contraction( ops.nullop, ops.add, frozenset(), ( Tensor( torch.tensor( [[ -0.6077086925506592, -1.1546266078948975, -0.7021151781082153, -0.5303535461425781, -0.6365622282028198, -1.2423288822174072, -0.9941254258155823, -0.6287292242050171 ], [ -0.6987162828445435, -1.0875964164733887, -0.7337473630905151, -0.4713417589664459, -0.6674002408981323, -1.2478348016738892, -0.8939017057418823, -0.5238542556762695 ]], dtype=torch.float32), # noqa ( ( 'time_b4', bint(2), ), ( '_event_1_b2', bint(8), ), ), 'real'), Gaussian( torch.tensor([ [[-0.3536059558391571], [-0.21779225766658783], [0.2840439975261688], [0.4531521499156952], [-0.1220812276005745], [-0.05519985035061836], [0.10932210087776184], [0.6656699776649475]], [[-0.39107921719551086], [ -0.20241987705230713 ], [0.2170514464378357], [0.4500560462474823], [0.27945515513420105], [-0.0490039587020874], [-0.06399798393249512], [0.846565842628479]] ], dtype=torch.float32), # noqa torch.tensor([ [[[1.984686255455017]], [[0.6699360013008118]], [[1.6215802431106567]], [[2.372016668319702]], [[1.77385413646698]], [[0.526767373085022]], [[0.8722561597824097]], [[2.1879124641418457]] ], [[[1.6996612548828125]], [[ 0.7535632252693176 ]], [[1.4946647882461548]], [[2.642792224884033]], [[1.7301604747772217]], [[0.5203893780708313]], [[1.055436372756958]], [[2.8370864391326904]]] ], dtype=torch.float32), # noqa ( ( 'time_b4', bint(2), ), ( '_event_1_b2', bint(8), ), ( 'value_b1', reals(), ), )), )), 'gate_rate_b3', '_event_1_b2', 'value_b1'), 'gate_rate_t', 'time_b4', 'gate_rate_b3') p_prior = Contraction( ops.logaddexp, ops.add, frozenset({'state(time=1)_b11', 'state_b10'}), ( MarkovProduct( ops.logaddexp, ops.add, Contraction( ops.nullop, ops.add, frozenset(), ( Tensor( torch.tensor(2.7672932147979736, dtype=torch.float32), (), 'real'), Gaussian( torch.tensor([-0.0, -0.0, 0.0, 0.0], dtype=torch.float32), torch.tensor([[ 98.01002502441406, 0.0, -99.0000228881836, -0.0 ], [ 0.0, 98.01002502441406, -0.0, -99.0000228881836 ], [ -99.0000228881836, -0.0, 100.0000228881836, 0.0 ], [ -0.0, -99.0000228881836, 0.0, 100.0000228881836 ]], dtype=torch.float32), # noqa ( ( 'state_b7', reals(2, ), ), ( 'state(time=1)_b8', reals(2, ), ), )), Subs( AffineNormal( Tensor( torch.tensor( [[ 0.03488487750291824, 0.07356668263673782, 0.19946961104869843, 0.5386509299278259, -0.708323061466217, 0.24411526322364807, -0.20855577290058136, -0.2421337217092514 ], [ 0.41762110590934753, 0.5272183418273926, -0.49835553765296936, -0.0363837406039238, -0.0005282597267068923, 0.2704298794269562, -0.155222088098526, -0.44802337884902954 ]], dtype=torch.float32), # noqa (), 'real'), Tensor( torch.tensor( [[ -0.003566693514585495, -0.2848514914512634, 0.037103548645973206, 0.12648648023605347, -0.18501518666744232, -0.20899859070777893, 0.04121830314397812, 0.0054807960987091064 ], [ 0.0021788496524095535, -0.18700894713401794, 0.08187370002269745, 0.13554862141609192, -0.10477752983570099, -0.20848378539085388, -0.01393645629286766, 0.011670656502246857 ]], dtype=torch.float32), # noqa (( 'time_b9', bint(2), ), ), 'real'), Tensor( torch.tensor( [[ 0.5974780917167664, 0.864071786403656, 1.0236268043518066, 0.7147538065910339, 0.7423890233039856, 0.9462157487869263, 1.2132389545440674, 1.0596832036972046 ], [ 0.5787821412086487, 0.9178534150123596, 0.9074794054031372, 0.6600189208984375, 0.8473222255706787, 0.8426999449729919, 1.194266438484192, 1.0471148490905762 ]], dtype=torch.float32), # noqa (( 'time_b9', bint(2), ), ), 'real'), Variable('state(time=1)_b8', reals(2, )), Variable('gate_rate_b6', reals(8, ))), (( 'gate_rate_b6', Binary( ops.GetitemOp(0), Variable('gate_rate_t', reals(2, 8)), Variable('time_b9', bint(2))), ), )), )), Variable('time_b9', bint(2)), frozenset({('state_b7', 'state(time=1)_b8')}), frozenset({('state(time=1)_b8', 'state(time=1)_b11'), ('state_b7', 'state_b10')})), # noqa Subs( dist.MultivariateNormal( Tensor(torch.tensor([0.0, 0.0], dtype=torch.float32), (), 'real'), Tensor( torch.tensor([[10.0, 0.0], [0.0, 10.0]], dtype=torch.float32), (), 'real'), Variable('value_b5', reals(2, ))), (( 'value_b5', Variable('state_b10', reals(2, )), ), )), )) p_likelihood = Contraction( ops.add, ops.nullop, frozenset({'time_b17', 'destin_b16', 'origin_b15'}), ( Contraction( ops.logaddexp, ops.add, frozenset({'gated_b14'}), ( dist.Categorical( Binary( ops.GetitemOp(0), Binary( ops.GetitemOp(0), Subs( Function( unpack_gate_rate_0, reals(2, 2, 2), (Variable('gate_rate_b12', reals(8, )), )), (( 'gate_rate_b12', Binary( ops.GetitemOp(0), Variable( 'gate_rate_t', reals(2, 8)), Variable('time_b17', bint(2))), ), )), Variable('origin_b15', bint(2))), Variable('destin_b16', bint(2))), Variable('gated_b14', bint(2))), Stack( 'gated_b14', ( dist.Poisson( Binary( ops.GetitemOp(0), Binary( ops.GetitemOp(0), Subs( Function( unpack_gate_rate_1, reals(2, 2), (Variable( 'gate_rate_b13', reals(8, )), )), (( 'gate_rate_b13', Binary( ops.GetitemOp(0), Variable( 'gate_rate_t', reals(2, 8)), Variable( 'time_b17', bint(2))), ), )), Variable('origin_b15', bint(2))), Variable('destin_b16', bint(2))), Tensor( torch.tensor( [[[1.0, 1.0], [5.0, 0.0]], [[0.0, 6.0], [19.0, 3.0]]], dtype=torch.float32), # noqa ( ( 'time_b17', bint(2), ), ( 'origin_b15', bint(2), ), ( 'destin_b16', bint(2), ), ), 'real')), dist.Delta( Tensor( torch.tensor(0.0, dtype=torch.float32), (), 'real'), Tensor( torch.tensor(0.0, dtype=torch.float32), (), 'real'), Tensor( torch.tensor( [[[1.0, 1.0], [5.0, 0.0]], [[0.0, 6.0], [19.0, 3.0]]], dtype=torch.float32), # noqa ( ( 'time_b17', bint(2), ), ( 'origin_b15', bint(2), ), ( 'destin_b16', bint(2), ), ), 'real')), )), )), )) if analytic_kl: exact_part = funsor.Integrate(q, p_prior - q, "gate_rate_t") with interpretation(monte_carlo): approx_part = funsor.Integrate(q, p_likelihood, "gate_rate_t") elbo = exact_part + approx_part else: p = p_prior + p_likelihood with interpretation(monte_carlo): elbo = Integrate(q, p - q, "gate_rate_t") assert isinstance(elbo, Tensor), elbo.pretty() assert call_count == 1