コード例 #1
0
def test_cat_simple(output):
    x = random_tensor(OrderedDict([
        ('i', bint(2)),
    ]), output)
    y = random_tensor(OrderedDict([
        ('i', bint(3)),
        ('j', bint(4)),
    ]), output)
    z = random_tensor(OrderedDict([
        ('i', bint(5)),
        ('k', bint(6)),
    ]), output)

    assert Cat('i', (x, )) is x
    assert Cat('i', (y, )) is y
    assert Cat('i', (z, )) is z

    xy = Cat('i', (x, y))
    assert isinstance(xy, Tensor)
    assert xy.inputs == OrderedDict([
        ('i', bint(2 + 3)),
        ('j', bint(4)),
    ])
    assert xy.output == output

    xyz = Cat('i', (x, y, z))
    assert isinstance(xyz, Tensor)
    assert xyz.inputs == OrderedDict([
        ('i', bint(2 + 3 + 5)),
        ('j', bint(4)),
        ('k', bint(6)),
    ])
    assert xy.output == output
コード例 #2
0
ファイル: test_tensor.py プロジェクト: ordabayevy/funsor
def test_cat_simple(output):
    x = random_tensor(OrderedDict([
        ('i', Bint[2]),
    ]), output)
    y = random_tensor(OrderedDict([
        ('i', Bint[3]),
        ('j', Bint[4]),
    ]), output)
    z = random_tensor(OrderedDict([
        ('i', Bint[5]),
        ('k', Bint[6]),
    ]), output)

    assert Cat('i', (x, )) is x
    assert Cat('i', (y, )) is y
    assert Cat('i', (z, )) is z

    xy = Cat('i', (x, y))
    assert isinstance(xy, Tensor)
    assert xy.inputs == OrderedDict([
        ('i', Bint[2 + 3]),
        ('j', Bint[4]),
    ])
    assert xy.output == output

    xyz = Cat('i', (x, y, z))
    assert isinstance(xyz, Tensor)
    assert xyz.inputs == OrderedDict([
        ('i', Bint[2 + 3 + 5]),
        ('j', Bint[4]),
        ('k', Bint[6]),
    ])
    assert xy.output == output
コード例 #3
0
def test_cat_simple():
    x = Stack('i', (Number(0), Number(1), Number(2)))
    y = Stack('i', (Number(3), Number(4)))

    assert Cat('i', (x, )) is x
    assert Cat('i', (y, )) is y

    xy = Cat('i', (x, y))
    assert xy.inputs == OrderedDict(i=bint(5))
    assert xy.name == 'i'
    for i in range(5):
        assert xy(i=i) is Number(i)
コード例 #4
0
def test_cat_slice_tensor(start, stop, step):

    terms = tuple(
        random_tensor(OrderedDict(t=bint(t), a=bint(2)))
        for t in [2, 1, 3, 4, 1, 3])
    dtype = sum(term.inputs['t'].dtype for term in terms)
    sub = Slice('t', start, stop, step, dtype)

    # eager
    expected = Cat('t', terms)(t=sub)

    # lazy - exercise Cat.eager_subs
    with interpretation(lazy):
        actual = Cat('t', terms)(t=sub)
    actual = reinterpret(actual)

    assert_close(actual, expected)
コード例 #5
0
def mixed_sequential_sum_product(sum_op, prod_op, trans, time, step, num_segments=None):
    """
    For a funsor ``trans`` with dimensions ``time``, ``prev`` and ``curr``,
    computes a recursion equivalent to::

        tail_time = 1 + arange("time", trans.inputs["time"].size - 1)
        tail = sequential_sum_product(sum_op, prod_op,
                                      trans(time=tail_time),
                                      time, {"prev": "curr"})
        return prod_op(trans(time=0)(curr="drop"), tail(prev="drop")) \
           .reduce(sum_op, "drop")

    by mixing parallel and serial scan algorithms over ``num_segments`` segments.

    :param ~funsor.ops.AssociativeOp sum_op: A semiring sum operation.
    :param ~funsor.ops.AssociativeOp prod_op: A semiring product operation.
    :param ~funsor.terms.Funsor trans: A transition funsor.
    :param Variable time: The time input dimension.
    :param dict step: A dict mapping previous variables to current variables.
        This can contain multiple pairs of prev->curr variable names.
    :param int num_segments: number of segments for the first stage
    """
    time_var, time, duration = time, time.name, time.output.size
    num_segments = duration if num_segments is None else num_segments
    assert num_segments > 0 and duration > 0

    # handle unevenly sized segments by chopping off the final segment and calling mixed_sequential_sum_product again
    if duration % num_segments and duration - duration % num_segments > 0:
        remainder = trans(**{time: Slice(time, duration - duration % num_segments, duration, 1, duration)})
        initial = trans(**{time: Slice(time, 0, duration - duration % num_segments, 1, duration)})
        initial_eliminated = mixed_sequential_sum_product(
            sum_op, prod_op, initial, Variable(time, bint(duration - duration % num_segments)), step,
            num_segments=num_segments)
        final = Cat(time, (Stack(time, (initial_eliminated,)), remainder))
        final_eliminated = naive_sequential_sum_product(
            sum_op, prod_op, final, Variable(time, bint(1 + duration % num_segments)), step)
        return final_eliminated

    # handle degenerate cases that reduce to a single stage
    if num_segments == 1:
        return naive_sequential_sum_product(sum_op, prod_op, trans, time_var, step)
    if num_segments >= duration:
        return sequential_sum_product(sum_op, prod_op, trans, time_var, step)

    # break trans into num_segments segments of equal length
    segment_length = duration // num_segments
    segments = [trans(**{time: Slice(time, i * segment_length, (i + 1) * segment_length, 1, duration)})
                for i in range(num_segments)]

    first_stage_result = naive_sequential_sum_product(
        sum_op, prod_op, Stack(time + "__SEGMENTED", tuple(segments)),
        Variable(time, bint(segment_length)), step)

    second_stage_result = sequential_sum_product(
        sum_op, prod_op, first_stage_result,
        Variable(time + "__SEGMENTED", bint(num_segments)), step)

    return second_stage_result
コード例 #6
0
ファイル: sum_product.py プロジェクト: ordabayevy/funsor
def sequential_sum_product(sum_op, prod_op, trans, time, step):
    """
    For a funsor ``trans`` with dimensions ``time``, ``prev`` and ``curr``,
    computes a recursion equivalent to::

        tail_time = 1 + arange("time", trans.inputs["time"].size - 1)
        tail = sequential_sum_product(sum_op, prod_op,
                                      trans(time=tail_time),
                                      time, {"prev": "curr"})
        return prod_op(trans(time=0)(curr="drop"), tail(prev="drop")) \
           .reduce(sum_op, "drop")

    but does so efficiently in parallel in O(log(time)).

    :param ~funsor.ops.AssociativeOp sum_op: A semiring sum operation.
    :param ~funsor.ops.AssociativeOp prod_op: A semiring product operation.
    :param ~funsor.terms.Funsor trans: A transition funsor.
    :param Variable time: The time input dimension.
    :param dict step: A dict mapping previous variables to current variables.
        This can contain multiple pairs of prev->curr variable names.
    """
    assert isinstance(sum_op, AssociativeOp)
    assert isinstance(prod_op, AssociativeOp)
    assert isinstance(trans, Funsor)
    assert isinstance(time, Variable)
    assert isinstance(step, dict)
    assert all(isinstance(k, str) for k in step.keys())
    assert all(isinstance(v, str) for v in step.values())
    if time.name in trans.inputs:
        assert time.output == trans.inputs[time.name]

    step = OrderedDict(sorted(step.items()))
    drop = tuple("_drop_{}".format(i) for i in range(len(step)))
    prev_to_drop = dict(zip(step.keys(), drop))
    curr_to_drop = dict(zip(step.values(), drop))
    drop = frozenset(drop)

    time, duration = time.name, time.output.size
    while duration > 1:
        even_duration = duration // 2 * 2
        x = trans(**{time: Slice(time, 0, even_duration, 2, duration)},
                  **curr_to_drop)
        y = trans(**{time: Slice(time, 1, even_duration, 2, duration)},
                  **prev_to_drop)
        contracted = Contraction(sum_op, prod_op, drop, x, y)

        if duration > even_duration:
            extra = trans(**{time: Slice(time, duration - 1, duration)})
            contracted = Cat(time, (contracted, extra))
        trans = contracted
        duration = (duration + 1) // 2
    return trans(**{time: 0})
コード例 #7
0
def test_quote(interp):
    with interpretation(interp):
        x = Variable('x', bint(8))
        check_quote(x)

        y = Variable('y', reals(8, 3, 3))
        check_quote(y)
        check_quote(y[x])

        z = Stack('i', (Number(0), Variable('z', reals())))
        check_quote(z)
        check_quote(z(i=0))
        check_quote(z(i=Slice('i', 0, 1, 1, 2)))
        check_quote(z.reduce(ops.add, 'i'))
        check_quote(Cat('i', (z, z, z)))
        check_quote(Lambda(Variable('i', bint(2)), z))
コード例 #8
0
def test_cat(name):
    with interpretation(reflect):
        x = Stack("t", (Number(1), Number(2)))
        y = Stack("t", (Number(4), Number(8), Number(16)))
        xy = Cat(name, (x, y), "t")
        xy.reduce(ops.add)