コード例 #1
0
def test_normal_independent():
    loc = random_tensor(OrderedDict(), reals(2))
    scale = random_tensor(OrderedDict(), reals(2)).exp()
    fn = dist.Normal(loc['i'], scale['i'], value='z_i')
    assert fn.inputs['z_i'] == reals()
    d = Independent(fn, 'z', 'i', 'z_i')
    assert d.inputs['z'] == reals(2)
    sample = d.sample(frozenset(['z']))
    assert isinstance(sample, Contraction)
    assert sample.inputs['z'] == reals(2)
コード例 #2
0
def test_normal_independent():
    loc = random_tensor(OrderedDict(), Reals[2])
    scale = ops.exp(random_tensor(OrderedDict(), Reals[2]))
    fn = dist.Normal(loc['i'], scale['i'], value='z_i')
    assert fn.inputs['z_i'] == Real
    d = Independent(fn, 'z', 'i', 'z_i')
    assert d.inputs['z'] == Reals[2]
    rng_key = None if get_backend() == "torch" else np.array([0, 0], dtype=np.uint32)
    sample = d.sample(frozenset(['z']), rng_key=rng_key)
    assert isinstance(sample, Contraction)
    assert sample.inputs['z'] == Reals[2]
コード例 #3
0
def test_independent():
    f = Variable('x_i', reals(4, 5)) + random_tensor(OrderedDict(i=bint(3)))
    assert f.inputs['x_i'] == reals(4, 5)
    assert f.inputs['i'] == bint(3)

    actual = Independent(f, 'x', 'i', 'x_i')
    assert actual.inputs['x'] == reals(3, 4, 5)
    assert 'i' not in actual.inputs

    x = Variable('x', reals(3, 4, 5))
    expected = f(x_i=x['i']).reduce(ops.add, 'i')
    assert actual.inputs == expected.inputs
    assert actual.output == expected.output

    data = random_tensor(OrderedDict(), x.output)
    assert_close(actual(data), expected(data), atol=1e-5, rtol=1e-5)

    renamed = actual(x='y')
    assert isinstance(renamed, Independent)
    assert_close(renamed(y=data), expected(x=data), atol=1e-5, rtol=1e-5)

    # Ensure it's ok for .reals_var and .diag_var to be the same.
    renamed = actual(x='x_i')
    assert isinstance(renamed, Independent)
    assert_close(renamed(x_i=data), expected(x=data), atol=1e-5, rtol=1e-5)
コード例 #4
0
def _independent_to_funsor(pyro_dist, event_inputs=()):
    event_names = tuple("_event_{}".format(len(event_inputs) + i)
                        for i in range(pyro_dist.reinterpreted_batch_ndims))
    result = dist_to_funsor(pyro_dist.base_dist, event_inputs + event_names)
    for name in reversed(event_names):
        result = Independent(result, "value", name, "value")
    return result
コード例 #5
0
ファイル: joint.py プロジェクト: tessythomas123/funsor
def eager_independent_joint(joint, reals_var, bint_var, diag_var):
    if diag_var not in joint.terms[0].fresh:
        return None

    delta = Independent(joint.terms[0], reals_var, bint_var, diag_var)
    new_terms = (delta, ) + tuple(
        t.reduce(ops.add, bint_var) for t in joint.terms[1:])
    return reduce(joint.bin_op, new_terms)
コード例 #6
0
def eager_affine_normal(matrix, loc, scale, value_x, value_y):
    assert len(matrix.output.shape) == 2
    assert value_x.output == reals(matrix.output.shape[0])
    assert value_y.output == reals(matrix.output.shape[1])
    loc += value_x @ matrix
    int_inputs, (loc, scale) = align_tensors(loc, scale, expand=True)

    i_name = gensym("i")
    y_name = gensym("y")
    y_i_name = gensym("y_i")
    int_inputs[i_name] = bint(value_y.output.shape[0])
    loc = Tensor(loc, int_inputs)
    scale = Tensor(scale, int_inputs)
    y_dist = Independent(Normal(loc, scale, y_i_name), y_name, i_name, y_i_name)
    return y_dist(**{y_name: value_y})
コード例 #7
0
def test_subs_independent():
    f = Variable('x', reals(4, 5)) + random_tensor(OrderedDict(i=bint(3)))

    actual = Independent(f, 'x', 'i')
    assert 'i' not in actual.inputs

    y = Variable('y', reals(3, 4, 5))
    fsub = y + (0. * random_tensor(OrderedDict(i=bint(7))))
    actual = actual(x=fsub)
    assert actual.inputs['i'] == bint(7)

    expected = f(x=y['i']).reduce(ops.add, 'i')

    data = random_tensor(OrderedDict(i=bint(7)), y.output)
    assert_close(actual(y=data), expected(y=data))
コード例 #8
0
ファイル: joint.py プロジェクト: fehiepsi/funsor
def eager_independent(joint, reals_var, bint_var):
    for i, delta in enumerate(joint.deltas):
        if delta.name == reals_var or delta.name.startswith(reals_var +
                                                            "__BOUND"):
            delta = Independent(delta, reals_var, bint_var)
            deltas = joint.deltas[:i] + (delta, ) + joint.deltas[1 + i:]
            discrete = joint.discrete
            if bint_var in discrete.inputs:
                discrete = discrete.reduce(ops.add, bint_var)
            gaussian = joint.gaussian
            if bint_var in gaussian.inputs:
                gaussian = gaussian.reduce(ops.add, bint_var)
            return Joint(deltas, discrete, gaussian)

    return None  # defer to default implementation
コード例 #9
0
def test_subs_independent():
    f = Variable('x_i', Reals[4, 5]) + random_tensor(OrderedDict(i=Bint[3]))

    actual = Independent(f, 'x', 'i', 'x_i')
    assert 'i' not in actual.inputs
    assert 'x_i' not in actual.inputs

    y = Variable('y', Reals[3, 4, 5])
    fsub = y + (0. * random_tensor(OrderedDict(i=Bint[7])))
    actual = actual(x=fsub)
    assert actual.inputs['i'] == Bint[7]

    expected = f(x_i=y['i']).reduce(ops.add, 'i')

    data = random_tensor(OrderedDict(i=Bint[7]), y.output)
    assert_close(actual(y=data), expected(y=data))
コード例 #10
0
def test_independent():
    f = Variable('x', reals(4, 5)) + random_tensor(OrderedDict(i=bint(3)))
    assert f.inputs['x'] == reals(4, 5)
    assert f.inputs['i'] == bint(3)

    actual = Independent(f, 'x', 'i')
    assert actual.inputs['x'] == reals(3, 4, 5)
    assert 'i' not in actual.inputs

    x = Variable('x', reals(3, 4, 5))
    expected = f(x=x['i']).reduce(ops.add, 'i')
    assert actual.inputs == expected.inputs
    assert actual.output == expected.output

    data = random_tensor(OrderedDict(), x.output)
    assert_close(actual(data), expected(data), atol=1e-5, rtol=1e-5)
コード例 #11
0
ファイル: test_bart.py プロジェクト: pangyyyyy/funsor
def test_bart(analytic_kl):
    global call_count
    call_count = 0

    with interpretation(reflect):
        q = Independent(
            Independent(
                Contraction(
                    ops.nullop,
                    ops.add,
                    frozenset(),
                    (
                        Tensor(
                            torch.tensor(
                                [[
                                    -0.6077086925506592, -1.1546266078948975,
                                    -0.7021151781082153, -0.5303535461425781,
                                    -0.6365622282028198, -1.2423288822174072,
                                    -0.9941254258155823, -0.6287292242050171
                                ],
                                 [
                                     -0.6987162828445435, -1.0875964164733887,
                                     -0.7337473630905151, -0.4713417589664459,
                                     -0.6674002408981323, -1.2478348016738892,
                                     -0.8939017057418823, -0.5238542556762695
                                 ]],
                                dtype=torch.float32),  # noqa
                            (
                                (
                                    'time_b4',
                                    bint(2),
                                ),
                                (
                                    '_event_1_b2',
                                    bint(8),
                                ),
                            ),
                            'real'),
                        Gaussian(
                            torch.tensor([
                                [[-0.3536059558391571], [-0.21779225766658783],
                                 [0.2840439975261688], [0.4531521499156952],
                                 [-0.1220812276005745], [-0.05519985035061836],
                                 [0.10932210087776184], [0.6656699776649475]],
                                [[-0.39107921719551086], [
                                    -0.20241987705230713
                                ], [0.2170514464378357], [0.4500560462474823],
                                 [0.27945515513420105], [-0.0490039587020874],
                                 [-0.06399798393249512], [0.846565842628479]]
                            ],
                                         dtype=torch.float32),  # noqa
                            torch.tensor([
                                [[[1.984686255455017]], [[0.6699360013008118]],
                                 [[1.6215802431106567]], [[2.372016668319702]],
                                 [[1.77385413646698]], [[0.526767373085022]],
                                 [[0.8722561597824097]], [[2.1879124641418457]]
                                 ],
                                [[[1.6996612548828125]], [[
                                    0.7535632252693176
                                ]], [[1.4946647882461548]],
                                 [[2.642792224884033]], [[1.7301604747772217]],
                                 [[0.5203893780708313]], [[1.055436372756958]],
                                 [[2.8370864391326904]]]
                            ],
                                         dtype=torch.float32),  # noqa
                            (
                                (
                                    'time_b4',
                                    bint(2),
                                ),
                                (
                                    '_event_1_b2',
                                    bint(8),
                                ),
                                (
                                    'value_b1',
                                    reals(),
                                ),
                            )),
                    )),
                'gate_rate_b3',
                '_event_1_b2',
                'value_b1'),
            'gate_rate_t',
            'time_b4',
            'gate_rate_b3')
        p_prior = Contraction(
            ops.logaddexp,
            ops.add,
            frozenset({'state(time=1)_b11', 'state_b10'}),
            (
                MarkovProduct(
                    ops.logaddexp,
                    ops.add,
                    Contraction(
                        ops.nullop,
                        ops.add,
                        frozenset(),
                        (
                            Tensor(
                                torch.tensor(2.7672932147979736,
                                             dtype=torch.float32), (), 'real'),
                            Gaussian(
                                torch.tensor([-0.0, -0.0, 0.0, 0.0],
                                             dtype=torch.float32),
                                torch.tensor([[
                                    98.01002502441406, 0.0, -99.0000228881836,
                                    -0.0
                                ],
                                              [
                                                  0.0, 98.01002502441406, -0.0,
                                                  -99.0000228881836
                                              ],
                                              [
                                                  -99.0000228881836, -0.0,
                                                  100.0000228881836, 0.0
                                              ],
                                              [
                                                  -0.0, -99.0000228881836, 0.0,
                                                  100.0000228881836
                                              ]],
                                             dtype=torch.float32),  # noqa
                                (
                                    (
                                        'state_b7',
                                        reals(2, ),
                                    ),
                                    (
                                        'state(time=1)_b8',
                                        reals(2, ),
                                    ),
                                )),
                            Subs(
                                AffineNormal(
                                    Tensor(
                                        torch.tensor(
                                            [[
                                                0.03488487750291824,
                                                0.07356668263673782,
                                                0.19946961104869843,
                                                0.5386509299278259,
                                                -0.708323061466217,
                                                0.24411526322364807,
                                                -0.20855577290058136,
                                                -0.2421337217092514
                                            ],
                                             [
                                                 0.41762110590934753,
                                                 0.5272183418273926,
                                                 -0.49835553765296936,
                                                 -0.0363837406039238,
                                                 -0.0005282597267068923,
                                                 0.2704298794269562,
                                                 -0.155222088098526,
                                                 -0.44802337884902954
                                             ]],
                                            dtype=torch.float32),  # noqa
                                        (),
                                        'real'),
                                    Tensor(
                                        torch.tensor(
                                            [[
                                                -0.003566693514585495,
                                                -0.2848514914512634,
                                                0.037103548645973206,
                                                0.12648648023605347,
                                                -0.18501518666744232,
                                                -0.20899859070777893,
                                                0.04121830314397812,
                                                0.0054807960987091064
                                            ],
                                             [
                                                 0.0021788496524095535,
                                                 -0.18700894713401794,
                                                 0.08187370002269745,
                                                 0.13554862141609192,
                                                 -0.10477752983570099,
                                                 -0.20848378539085388,
                                                 -0.01393645629286766,
                                                 0.011670656502246857
                                             ]],
                                            dtype=torch.float32),  # noqa
                                        ((
                                            'time_b9',
                                            bint(2),
                                        ), ),
                                        'real'),
                                    Tensor(
                                        torch.tensor(
                                            [[
                                                0.5974780917167664,
                                                0.864071786403656,
                                                1.0236268043518066,
                                                0.7147538065910339,
                                                0.7423890233039856,
                                                0.9462157487869263,
                                                1.2132389545440674,
                                                1.0596832036972046
                                            ],
                                             [
                                                 0.5787821412086487,
                                                 0.9178534150123596,
                                                 0.9074794054031372,
                                                 0.6600189208984375,
                                                 0.8473222255706787,
                                                 0.8426999449729919,
                                                 1.194266438484192,
                                                 1.0471148490905762
                                             ]],
                                            dtype=torch.float32),  # noqa
                                        ((
                                            'time_b9',
                                            bint(2),
                                        ), ),
                                        'real'),
                                    Variable('state(time=1)_b8', reals(2, )),
                                    Variable('gate_rate_b6', reals(8, ))),
                                ((
                                    'gate_rate_b6',
                                    Binary(
                                        ops.GetitemOp(0),
                                        Variable('gate_rate_t', reals(2, 8)),
                                        Variable('time_b9', bint(2))),
                                ), )),
                        )),
                    Variable('time_b9', bint(2)),
                    frozenset({('state_b7', 'state(time=1)_b8')}),
                    frozenset({('state(time=1)_b8', 'state(time=1)_b11'),
                               ('state_b7', 'state_b10')})),  # noqa
                Subs(
                    dist.MultivariateNormal(
                        Tensor(torch.tensor([0.0, 0.0], dtype=torch.float32),
                               (), 'real'),
                        Tensor(
                            torch.tensor([[10.0, 0.0], [0.0, 10.0]],
                                         dtype=torch.float32),
                            (), 'real'), Variable('value_b5', reals(2, ))), ((
                                'value_b5',
                                Variable('state_b10', reals(2, )),
                            ), )),
            ))
        p_likelihood = Contraction(
            ops.add,
            ops.nullop,
            frozenset({'time_b17', 'destin_b16', 'origin_b15'}),
            (
                Contraction(
                    ops.logaddexp,
                    ops.add,
                    frozenset({'gated_b14'}),
                    (
                        dist.Categorical(
                            Binary(
                                ops.GetitemOp(0),
                                Binary(
                                    ops.GetitemOp(0),
                                    Subs(
                                        Function(
                                            unpack_gate_rate_0, reals(2, 2, 2),
                                            (Variable('gate_rate_b12',
                                                      reals(8, )), )),
                                        ((
                                            'gate_rate_b12',
                                            Binary(
                                                ops.GetitemOp(0),
                                                Variable(
                                                    'gate_rate_t', reals(2,
                                                                         8)),
                                                Variable('time_b17', bint(2))),
                                        ), )), Variable('origin_b15',
                                                        bint(2))),
                                Variable('destin_b16', bint(2))),
                            Variable('gated_b14', bint(2))),
                        Stack(
                            'gated_b14',
                            (
                                dist.Poisson(
                                    Binary(
                                        ops.GetitemOp(0),
                                        Binary(
                                            ops.GetitemOp(0),
                                            Subs(
                                                Function(
                                                    unpack_gate_rate_1,
                                                    reals(2, 2), (Variable(
                                                        'gate_rate_b13',
                                                        reals(8, )), )),
                                                ((
                                                    'gate_rate_b13',
                                                    Binary(
                                                        ops.GetitemOp(0),
                                                        Variable(
                                                            'gate_rate_t',
                                                            reals(2, 8)),
                                                        Variable(
                                                            'time_b17',
                                                            bint(2))),
                                                ), )),
                                            Variable('origin_b15', bint(2))),
                                        Variable('destin_b16', bint(2))),
                                    Tensor(
                                        torch.tensor(
                                            [[[1.0, 1.0], [5.0, 0.0]],
                                             [[0.0, 6.0], [19.0, 3.0]]],
                                            dtype=torch.float32),  # noqa
                                        (
                                            (
                                                'time_b17',
                                                bint(2),
                                            ),
                                            (
                                                'origin_b15',
                                                bint(2),
                                            ),
                                            (
                                                'destin_b16',
                                                bint(2),
                                            ),
                                        ),
                                        'real')),
                                dist.Delta(
                                    Tensor(
                                        torch.tensor(0.0, dtype=torch.float32),
                                        (), 'real'),
                                    Tensor(
                                        torch.tensor(0.0, dtype=torch.float32),
                                        (), 'real'),
                                    Tensor(
                                        torch.tensor(
                                            [[[1.0, 1.0], [5.0, 0.0]],
                                             [[0.0, 6.0], [19.0, 3.0]]],
                                            dtype=torch.float32),  # noqa
                                        (
                                            (
                                                'time_b17',
                                                bint(2),
                                            ),
                                            (
                                                'origin_b15',
                                                bint(2),
                                            ),
                                            (
                                                'destin_b16',
                                                bint(2),
                                            ),
                                        ),
                                        'real')),
                            )),
                    )), ))

    if analytic_kl:
        exact_part = funsor.Integrate(q, p_prior - q, "gate_rate_t")
        with interpretation(monte_carlo):
            approx_part = funsor.Integrate(q, p_likelihood, "gate_rate_t")
        elbo = exact_part + approx_part
    else:
        p = p_prior + p_likelihood
        with interpretation(monte_carlo):
            elbo = Integrate(q, p - q, "gate_rate_t")

    assert isinstance(elbo, Tensor), elbo.pretty()
    assert call_count == 1
コード例 #12
0
def test_sample_independent():
    f = Variable('x_i', reals(4, 5)) + random_tensor(OrderedDict(i=bint(3)))
    actual = Independent(f, 'x', 'i', 'x_i')
    assert actual.sample('i')
    assert actual.sample('j', {'i': 2})
コード例 #13
0
def test_sample_independent():
    f = Variable('x_i', Reals[4, 5]) + random_tensor(OrderedDict(i=Bint[3]))
    actual = Independent(f, 'x', 'i', 'x_i')
    assert actual.sample('i')
    assert actual.sample('j', {'i': 2})