コード例 #1
0
def eager_mvn(loc, scale_tril, value):
    assert len(loc.shape) == 1
    assert len(scale_tril.shape) == 2
    assert value.output == loc.output
    if not is_affine(loc) or not is_affine(value):
        return None  # lazy

    info_vec = scale_tril.data.new_zeros(scale_tril.data.shape[:-1])
    precision = cholesky_inverse(scale_tril.data)
    scale_diag = Tensor(scale_tril.data.diagonal(dim1=-1, dim2=-2),
                        scale_tril.inputs)
    log_prob = -0.5 * scale_diag.shape[0] * math.log(
        2 * math.pi) - scale_diag.log().sum()
    inputs = scale_tril.inputs.copy()
    var = gensym('value')
    inputs[var] = reals(scale_diag.shape[0])
    gaussian = log_prob + Gaussian(info_vec, precision, inputs)
    return gaussian(**{var: value - loc})
コード例 #2
0
def test_transform_exp(shape):
    point = Tensor(torch.randn(shape).abs())
    x = Variable('x', reals(*shape))
    actual = Delta('y', point)(y=ops.exp(x))
    expected = Delta('x', point.log(), point.log().sum())
    assert_close(actual, expected)
コード例 #3
0
def eager_mvn(loc, scale_tril, value):
    assert len(loc.shape) == 1
    assert len(scale_tril.shape) == 2
    assert value.output == loc.output
    if not is_affine(loc) or not is_affine(value):
        return None  # lazy

    # Extract an affine representation.
    eye = torch.eye(scale_tril.data.size(-1)).expand(scale_tril.data.shape)
    prec_sqrt = Tensor(
        eye.triangular_solve(scale_tril.data, upper=False).solution,
        scale_tril.inputs)
    affine = prec_sqrt @ (loc - value)
    const, coeffs = extract_affine(affine)
    if not isinstance(const, Tensor):
        return None  # lazy
    if not all(isinstance(coeff, Tensor) for coeff, _ in coeffs.values()):
        return None  # lazy

    # Compute log_prob using funsors.
    scale_diag = Tensor(scale_tril.data.diagonal(dim1=-1, dim2=-2),
                        scale_tril.inputs)
    log_prob = (-0.5 * scale_diag.shape[0] * math.log(2 * math.pi) -
                scale_diag.log().sum() - 0.5 * (const**2).sum())

    # Dovetail to avoid variable name collision in einsum.
    equations1 = [
        ''.join(c if c in ',->' else chr(ord(c) * 2 - ord('a')) for c in eqn)
        for _, eqn in coeffs.values()
    ]
    equations2 = [
        ''.join(c if c in ',->' else chr(ord(c) * 2 - ord('a') + 1)
                for c in eqn) for _, eqn in coeffs.values()
    ]

    real_inputs = OrderedDict(
        (k, v) for k, v in affine.inputs.items() if v.dtype == 'real')
    assert tuple(real_inputs) == tuple(coeffs)

    # Align and broadcast tensors.
    neg_const = -const
    tensors = [neg_const] + [coeff for coeff, _ in coeffs.values()]
    inputs, tensors = align_tensors(*tensors, expand=True)
    neg_const, coeffs = tensors[0], tensors[1:]
    dim = sum(d.num_elements for d in real_inputs.values())
    batch_shape = neg_const.shape[:-1]

    info_vec = BlockVector(batch_shape + (dim, ))
    precision = BlockMatrix(batch_shape + (dim, dim))
    offset1 = 0
    for i1, (v1, c1) in enumerate(zip(real_inputs, coeffs)):
        size1 = real_inputs[v1].num_elements
        slice1 = slice(offset1, offset1 + size1)
        inputs1, output1 = equations1[i1].split('->')
        input11, input12 = inputs1.split(',')
        assert input11 == input12 + output1
        info_vec[..., slice1] = torch.einsum(
            f'...{input11},...{output1}->...{input12}', c1, neg_const) \
            .reshape(batch_shape + (size1,))
        offset2 = 0
        for i2, (v2, c2) in enumerate(zip(real_inputs, coeffs)):
            size2 = real_inputs[v2].num_elements
            slice2 = slice(offset2, offset2 + size2)
            inputs2, output2 = equations2[i2].split('->')
            input21, input22 = inputs2.split(',')
            assert input21 == input22 + output2
            precision[..., slice1, slice2] = torch.einsum(
                f'...{input11},...{input22}{output1}->...{input12}{input22}', c1, c2) \
                .reshape(batch_shape + (size1, size2))
            offset2 += size2
        offset1 += size1

    info_vec = info_vec.as_tensor()
    precision = precision.as_tensor()
    inputs.update(real_inputs)
    return log_prob + Gaussian(info_vec, precision, inputs)