try: int(s) return True except ValueError: return False def acquireID(): inputOk = False k = 0 while inputOk!=True: inp = raw_input(MSG_INPUT) if isInt(inp): k = int(inp) if k>=0: inputOk=True else: print MSG_ERRORE_ID_BASSO else: print MSG_ERRORE_NO_INT return k esci = False while not esci: path = fdb.getPath(acquireID()) if path!="": esci = True img = cv2.imread(path, cv2.IMREAD_COLOR) cv2.imshow("pippo", img) cv2.waitKey(0) cv2.destroyAllWindows()
# FOR EVERY FOLD OF THE CROSS-VALIDATION PROCESS for i in range(0,totIter): # TRAINING # The training set has the following structure: # [[groupClass, [IDs]], ...] # Example: # [["ClassA", [4, 8, 24]], ["ClassB", [15, 29, 1]], ...] trainingSet = fc.getTrainingSet(i) for group in trainingSet: groupClass = group[0] # class of the images in this group for ID in group[1]: imgPath = fdb.getPath(ID) # retrieve the image using imgPath and use it to train the model, # knowing that its class is groupClass #TESTING # The test set has the following structure: # [IDs] # Example: # [5, 15, 21, ...] testSet = fc.getTestSet(i) rankingList = [] for ID in testSet: imgPath = fdb.getImgPath(ID) ranking = # image classification, see the next comment rankingList.append(ranking)