コード例 #1
0
def get_predictions_board(X_pairs,
                          model_filepath,
                          imgs_per_cluster=1000,
                          sw=False):
    phi = []
    eta = []
    pt = []

    iterations = int(len(X_pairs) / imgs_per_cluster)

    #ie = microndla.MDLA()

    ie = fwdnxt.FWDNXT()
    ie.SetFlag('debug', 'wb')
    ie.SetFlag("options", "V")
    ie.SetFlag('imgs_per_cluster', str(imgs_per_cluster))
    swnresults = ie.Compile('4x1x1', model_filepath, 'save.bin', 1, 1)
    nresults = ie.Init('save.bin', '')
    result = np.ndarray(swnresults, dtype=np.float32)

    start = 0
    end = 0

    for iter_i in range(0, len(X_pairs), imgs_per_cluster):
        start = iter_i
        end = start + imgs_per_cluster
        print(iter_i)
        print(start)
        print(end)

        current_batch = np.ascontiguousarray(np.swapaxes(
            np.expand_dims(np.expand_dims(X_pairs[start:end, :], 0), 0), 0, 2),
                                             dtype=np.float32())

        print(current_batch.shape)
        print(current_batch[0][0][0])

        result = np.ndarray(swnresults, dtype=np.float32)

        ie.Run_sw(current_batch, result)

        cur_phi_pred, cur_eta_pred, cur_pt_pred = parse_board_results(
            result, imgs_per_cluster, outputs=3)

        phi.extend(cur_phi_pred)
        eta.extend(cur_eta_pred)
        pt.extend(cur_pt_pred)

    ie.Free()

    return phi, eta, pt
コード例 #2
0
ファイル: ieproc.py プロジェクト: randymeyer-micron/SDK
def ieprocess(image_file, network_file):
    # load image and resize it:
    img = Image.open(image_file)

    #Resize it to the size expected by the network
    img = img.resize((224, 224), resample=Image.BILINEAR)

    #Convert to numpy float
    img = np.array(img).astype(np.float32) / 255

    #Transpose to plane-major, as required by our API
    img = np.ascontiguousarray(img.transpose(2, 0, 1))
    # print(img)
    print('Image shape:', img.shape)

    #Normalize images
    stat_mean = list([0.485, 0.456, 0.406])
    stat_std = list([0.229, 0.224, 0.225])
    for i in range(3):
        img[i] = (img[i] - stat_mean[i]) / stat_std[i]

    #Create and initialize the Inference Engine object
    ie = fwdnxt.FWDNXT()

    #Compile to a file
    swnresults = ie.Compile("{:d}x{:d}x{:d}".format(224, 224, 3), network_file,
                            'save.bin')

    #Init fpga
    nresults = ie.Init('save.bin', '')

    #Create the storage for the result and run one inference
    result = np.ndarray(swnresults, dtype=np.float32)
    ie.Run(img, result)

    #Convert to numpy and print top-5
    idxs = (-result).argsort()

    rstring = []
    with open("categories.txt") as f:
        categories = f.read().splitlines()
        for i in range(5):
            rstring.append(
                str(categories[idxs[i]]) + ', ' + str(result[idxs[i]]))

    #Free
    ie.Free()

    return rstring
コード例 #3
0
class VectorAdd(torch.nn.Module):
    def __init__(self):
        super(VectorAdd, self).__init__()

    def forward(self, x1, x2):
        x3 = x1 + x2
        return x3


D = args.d
inVec1 = torch.randn(1, D, 1, 1, dtype=torch.float32)
inVec2 = torch.randn(1, D, 1, 1, dtype=torch.float32)
modelProd = VectorAdd()
torch.onnx.export(modelProd, (inVec1, inVec2), "net_vector_add.onnx")

sf = fwdnxt.FWDNXT()
if args.verbose:
    sf.SetFlag('debug', 'b')  #debug options

# Compile to generate binary
snwresults = sf.Compile(
    '{:d}x{:d}x{:d};{:d}x{:d}x{:d}'.format(1, 1, D, 1, 1, D),
    'net_vector_add.onnx', 'net_vector_add.bin', 1, 1)

sf.Init("./net_vector_add.bin", "")
in_1 = np.ascontiguousarray(inVec1)
in_2 = np.ascontiguousarray(inVec2)
result = np.ascontiguousarray(np.ndarray((1, 1, snwresults), dtype=np.float32))
sf.Run((in_1, in_2), result)

outhw = modelProd(inVec1, inVec2)
コード例 #4
0
for i in range(2):
    #Convert to numpy float
    img[i] = np.array(img[i]).astype(np.float32) / 255

    #Transpose to plane-major, as required by our API
    img[i] = np.ascontiguousarray(img[i].transpose(2, 0, 1))

    #Normalize images
    stat_mean = list([0.485, 0.456, 0.406])
    stat_std = list([0.229, 0.224, 0.225])
    for j in range(3):
        img[i][j] = (img[i][j] - stat_mean[j]) / stat_std[j]

#Create and initialize the Inference Engine object
ie = fwdnxt.FWDNXT()
#ie.SetFlag('hwlinear','0')
#ie.SetFlag('debug','bw')

#Compile to a file
ie.Compile("{:d}x{:d}x{:d}".format(args.res1[2], args.res1[1], args.res1[0]),
           args.modelpath1, 'save1.bin')
ie.Compile("{:d}x{:d}x{:d}".format(args.res2[2], args.res2[1], args.res2[0]),
           args.modelpath2, 'save2.bin')
ie.Loadmulti(('save1.bin', 'save2.bin'))

#Init fpga
nresults = ie.Init('', args.load)

#Create the storage for the result and run one inference
result1 = np.ndarray(nresults[0], dtype=np.float32)