def run_replicate(argtuple): args, repid, repseed = argtuple rng = fp11.GSLrng(repseed) NANC = args.N locus_boundaries = [(float(i + i * 11), float(i + i * 11 + 11)) for i in range(args.nloci)] nregions = [[ fp11.Region(j[0], j[1], args.theta / (4. * float(NANC)), coupled=True) ] for i, j in zip(range(args.nloci), locus_boundaries)] recregions = [[ fp11.Region(j[0], j[1], args.rho / (4. * float(NANC)), coupled=True) ] for i, j in zip(range(args.nloci), locus_boundaries)] sregions = [[ fp11.GaussianS(j[0] + 5., j[0] + 6., args.mu, args.sigmu, coupled=False) ] for i, j in zip(range(args.nloci), locus_boundaries)] interlocus_rec = fp11ml.binomial_rec(rng, [0.5] * (args.nloci - 1)) nlist = np.array([NANC] * 20 * NANC, dtype=np.uint32) env = [(0, 0, 1), (10 * NANC, args.opt, 1)] pdict = { 'nregions': nregions, 'sregions': sregions, 'recregions': recregions, 'demography': nlist, 'interlocus': interlocus_rec, 'agg': fp11ml.AggAddTrait(), 'gvalue': fp11ml.MultiLocusGeneticValue([fp11tv.SlocusAdditiveTrait(2.0)] * args.nloci), 'trait2w': fp11qt.GSSmo(env), 'mutrates_s': [args.mu / float(args.nloci)] * args.nloci, 'mutrates_n': [10 * args.theta / float(4 * NANC)] * args.nloci, 'recrates': [10 * args.rho / float(4 * NANC)] * args.nloci, 'prune_selected': False } params = fp11.model_params.MlocusParamsQ(**pdict) ofilename = args.stub + '.rep' + str(repid) + '.pickle.lzma' recorder = Pickler(repid, NANC, ofilename) pop = fp11.MlocusPop(NANC, args.nloci, locus_boundaries) fp11qt.evolve(rng, pop, params, recorder) #Make sure last gen got pickled! if recorder.last_gen_recorded != pop.generation: with open(ofilename, "ab") as f: pickle.dump((repid, pop), f, -1) return ofilename
def run_replicate(argtuple): args, repid, repseed = argtuple rng = fp11.GSLrng(repseed) NANC = args.N locus_boundaries = [(float(i + i * 11), float(i + i * 11 + 11)) for i in range(args.nloci)] nregions = [[ fp11.Region(j[0], j[1], args.theta / (4. * float(NANC)), coupled=True) ] for i, j in zip(range(args.nloci), locus_boundaries)] recregions = [[ fp11.Region(j[0], j[1], args.rho / (4. * float(NANC)), coupled=True) ] for i, j in zip(range(args.nloci), locus_boundaries)] # Get the variance in effect sizes sigmu = args.sigmu # default if args.plarge is not None: ghat = gamma_hat(1.0, args.mu) F = generate_gaussian_function_to_minimize(ghat, args.plarge) sigmu = get_gaussian_sigma(F) sregions = [[ fp11.GaussianS(j[0] + 5., j[0] + 6., args.mu, sigmu, coupled=False) ] for i, j in zip(range(args.nloci), locus_boundaries)] interlocus_rec = fp11ml.binomial_rec(rng, [0.5] * (args.nloci - 1)) nlist = np.array([NANC] * 20 * NANC, dtype=np.uint32) env = [(0, 0, 1), (10 * NANC, args.opt, args.vsopt)] pdict = { 'nregions': nregions, 'sregions': sregions, 'recregions': recregions, 'demography': nlist, 'interlocus': interlocus_rec, 'agg': fp11ml.AggAddTrait(), 'gvalue': fp11ml.MultiLocusGeneticValue([fp11tv.SlocusAdditiveTrait(2.0)] * args.nloci), 'trait2w': fp11qt.GSSmo(env), 'mutrates_s': [args.mu / float(args.nloci)] * args.nloci, 'mutrates_n': [10 * args.theta / float(4 * NANC)] * args.nloci, 'recrates': [10 * args.rho / float(4 * NANC)] * args.nloci, 'prune_selected': False } params = fp11.model_params.MlocusParamsQ(**pdict) recorder = Recorder(repid, NANC, args.nsam) pop = fp11.MlocusPop(NANC, args.nloci, locus_boundaries) fp11qt.evolve(rng, pop, params, recorder) return recorder
def run_replicate(argtuple): args, repid, repseed = argtuple rng = fp11.GSLrng(repseed) NANC = args.N locus_boundaries = [(float(i + i * 11), float(i + i * 11 + 11)) for i in range(args.nloci)] nregions = [[ fp11.Region(j[0], j[1], args.theta / (4. * float(NANC)), coupled=True) ] for i, j in zip(range(args.nloci), locus_boundaries)] recregions = [[ fp11.Region(j[0], j[1], args.rho / (4. * float(NANC)), coupled=True) ] for i, j in zip(range(args.nloci), locus_boundaries)] sregions = [[ fp11.GaussianS(j[0] + 5., j[0] + 6., args.mu, args.sigmu, coupled=False) ] for i, j in zip(range(args.nloci), locus_boundaries)] interlocus_rec = fp11ml.binomial_rec([0.5] * (args.nloci - 1)) nlist = np.array([NANC] * args.simlen * NANC, dtype=np.uint32) # the tuples are (time, z_o, VS) env = [(0, 0, 1), (10 * NANC, args.opt, 1)] gv = fwdpy11.genetic_values.MlocusAdditive( 2.0, fwdpy11.genetic_values.GSSmo(env)) mutrates_s = [args.mu / float(args.nloci)] * args.nloci mutrates_n = [10 * args.theta / float(4 * NANC)] * args.nloci recrates = [10 * args.rho / float(4 * NANC)] * args.nloci pdict = { 'nregions': nregions, 'sregions': sregions, 'recregions': recregions, 'demography': nlist, 'interlocus_rec': interlocus_rec, 'rates': (mutrates_n, mutrates_s, recrates), 'gvalue': gv, 'prune_selected': False } params = fp11.model_params.ModelParams(**pdict) recorder = HapStatSampler(repid, NANC, args.nsam) # sched prevents the TBB library # from over-subscribing a node # when running many sims in parallel sched = None if HAVESCHED is True: sched = Scheduler(1) pop = fp11.MlocusPop(NANC, locus_boundaries) assert pop.nloci == len(locus_boundaries), "nloci != len(locus_boundaries)" fwdpy11.wright_fisher.evolve(rng, pop, params, recorder) return repid, recorder.data, pop
def run_replicate(argtuple): args, repid, repseed = argtuple rng = fp11.GSLrng(repseed) NANC = 7310 locus_boundaries = [(float(i + i * 11), float(i + i * 11 + 11)) for i in range(args.nloci)] nregions = [[ fp11.Region(j[0], j[1], args.theta / (4. * float(NANC)), coupled=True) ] for i, j in zip(range(args.nloci), locus_boundaries)] recregions = [[ fp11.Region(j[0], j[1], args.rho / (4. * float(NANC)), coupled=True) ] for i, j in zip(range(args.nloci), locus_boundaries)] sregions = [[ fp11.GaussianS(j[0] + 5., j[0] + 6., args.mu, args.sigmu, coupled=False) ] for i, j in zip(range(args.nloci), locus_boundaries)] interlocus_rec = fp11ml.binomial_rec(rng, [0.5] * (args.nloci - 1)) nlist = get_nlist() env = [(0, 0, 1), (np.argmax(nlist == 1861), args.opt, 1)] pdict = { 'nregions': nregions, 'sregions': sregions, 'recregions': recregions, 'demography': nlist, 'interlocus': interlocus_rec, 'agg': fp11ml.AggAddTrait(), 'gvalue': fp11ml.MultiLocusGeneticValue([fp11tv.SlocusAdditiveTrait(2.0)] * args.nloci), 'trait2w': fp11qt.GSSmo(env), 'mutrates_s': [args.mu] * args.nloci, 'mutrates_n': [float(args.nloci) * args.theta / float(4 * NANC)] * args.nloci, 'recrates': [float(args.nloci) * args.rho / float(4 * NANC)] * args.nloci, } #print(pdict['mutrates_n']) #for i in sregions: # for j in i: # print(str(j)) #return params = fp11.model_params.MlocusParamsQ(**pdict) ofilename = args.stub + '.rep' + str(repid) + '.gz' recorder = Pickler(repid, args.nsam, 8 * NANC, np.argmax(nlist == 1861), ofilename) pop = fp11.MlocusPop(NANC, args.nloci, locus_boundaries) fp11qt.evolve(rng, pop, params, recorder) #Make sure last gen got pickled! if recorder.last_gen_recorded != pop.generation: with open(ofilename, "ab") as f: with gzip.open(ofilename, "ab") as f: m = get_matrix(pop, args.nsam) pickle.dump(m, f, -1) pop.clear() del pop pop = None return ofilename
def run_replicate(argtuple): args, repid, repseed = argtuple rng = fp11.GSLrng(repseed) NANC = args.N locus_boundaries = [(float(i + i * 11), float(i + i * 11 + 11)) for i in range(args.nloci)] #nregions=[[fp11.Region(j[0],j[1],args.theta/(4.*float(NANC)),coupled=True)] for i,j in zip(range(args.nloci),locus_boundaries)] nregions = [[]] * args.nloci #Put the neutral variants in the selected regions nregions[0] = [ fp11.Region(locus_boundaries[0][0] + 5.0, locus_boundaries[0][0] + 6.0, 1) ] #Put the neutral variants in middle nregions[int(args.nloci / 2)] = [ fp11.Region(locus_boundaries[int(args.nloci / 2)][0] + 5., locus_boundaries[int(args.nloci / 2)][0] + 6., 1.0) ] #Put the neutral variants at far rigth end. nregions[args.nloci - 1] = [ fp11.Region(locus_boundaries[args.nloci - 1][1] - 1.0, locus_boundaries[args.nloci - 1][1], 1.0) ] recregions = [[ fp11.Region(j[0], j[1], args.rho / (4. * float(NANC)), coupled=True) ] for i, j in zip(range(args.nloci), locus_boundaries)] sregions = [[ fp11.GaussianS(j[0] + 5., j[0] + 6., args.mu, args.sigmu, coupled=False) ] for i, j in zip(range(args.nloci), locus_boundaries)] #The middle region has no sregions: sregions[int(args.nloci / 2)] = [] mutrates_s = [args.mu / float(args.nloci - 1)] * args.nloci #No selected mutations in the middle locus mutrates_s[int(args.nloci / 2)] = 0.0 mutrates_n = [0.0] * args.nloci for i in [0, int(args.nloci / 2), args.nloci - 1]: #The next line keeps scaling, etc., same as in other sims. mutrates_n[i] = (10.0 / 11.0) * (args.theta / float(4 * NANC)) interlocus_rec = fp11ml.binomial_rec(rng, [0.5] * (args.nloci - 1)) nlist = np.array([NANC] * 20 * NANC, dtype=np.uint32) env = [(0, 0, 1), (10 * NANC, args.opt, 1)] #print(mutrates_s) #print(mutrates_n) #print([10*args.rho/float(4*NANC)]*args.nloci) #for i in enumerate(nregions): # if len(nregions[i[0]])>0: # print("the type is",type(i[1])) # print(i,i[1][0].b,i[1][0].e,i[1][0].w) #for i in enumerate(sregions): # if len(sregions[i[0]])>0: # print(i,i[1][0].b,i[1][0].e,i[1][0].w) #for i in enumerate(recregions): # print(i,i[1][0].b,i[1][0].e) #sys.exit(0) pdict = { 'nregions': nregions, 'sregions': sregions, 'recregions': recregions, 'demography': nlist, 'interlocus': interlocus_rec, 'agg': fp11ml.AggAddTrait(), 'gvalue': fp11ml.MultiLocusGeneticValue([fp11tv.SlocusAdditiveTrait(2.0)] * args.nloci), 'trait2w': fp11qt.GSSmo(env), 'mutrates_s': mutrates_s, 'mutrates_n': mutrates_n, 'recrates': [10 * args.rho / float(4 * NANC)] * args.nloci, } params = fp11.model_params.MlocusParamsQ(**pdict) ofilename = args.stub + '.rep' + str(repid) + '.pickle.lzma' recorder = Pickler(repid, NANC, ofilename) pop = fp11.MlocusPop(NANC, args.nloci, locus_boundaries) fp11qt.evolve(rng, pop, params, recorder) #Make sure last gen got pickled! if recorder.last_gen_recorded != pop.generation: with open(ofilename, "ab") as f: pickle.dump((repid, pop), f, -1) return ofilename