コード例 #1
0
 def save_model_bin(self, binFilePath, modelPath=None):
     from fxpmath import Fxp
     if modelPath != None:
         self.model = load_model(modelPath, compile="False")
     with open(binFilePath, 'wb') as binFile:
         largest_inaccuracy = 0
         for layer in self.model.layers:
             g = layer.get_config()
             h = layer.get_weights()
             print(g)
             #binFile.write(json.dumps(g).encode(encoding="ascii",errors="unknown char"))
             # embedding = 1 * 68 * 8
             # simple rnn = 8 * 8, 8 * 8, 8 * 1
             # drop out: none
             # dense: 8 * 1, 1 * 1
             # activation: sigmoid
             for i in h:
                 i = np.array(i)
                 for index, x in np.ndenumerate(i):
                     print(x)
                     h_fxp = Fxp(x, signed=True, n_word=16, n_frac=8)
                     difference = abs(h_fxp.get_val() - x)
                     if difference > largest_inaccuracy:
                         largest_inaccuracy = difference
                     print(h_fxp.bin())
                     binFile.write(h_fxp.bin().encode(
                         encoding="ascii", errors="unknown char"))
         print("largest difference")
         print(str(largest_inaccuracy))
コード例 #2
0
 def save_model_txt_binary(self, txtPath, modelPath=None):
     from fxpmath import Fxp
     import math
     import json
     if modelPath != None:
         self.model = load_model(modelPath, compile="False")
     with open(txtPath, 'w') as txtFile:
         for layer in self.model.layers:
             g = layer.get_config()
             h = layer.get_weights()
             txtFile.write(json.dumps(g))
             txtFile.write("\n")
             for i in h:
                 i = np.array(i)
                 for index, x in np.ndenumerate(i):
                     if g["name"] == "dropout":
                         continue
                     #if g["name"] == "embedding":
                     #     print(index)
                     #     row = math.floor(index / 4)
                     #     col = index % 4
                     #     txtFile.write("row:"+str(row)+"col:"+col)
                     # else:
                     #     row = math.floor(index / 32)
                     #     col = index % 32
                     #     txtFile.write("row:"+str(row)+"col:"+col)
                     if len(index) > 1:
                         row = index[0]
                         col = index[1]
                         txtFile.write("row:" + str(row) + "col:" +
                                       str(col))
                     else:
                         row = index[0]
                         txtFile.write("row:" + str(row))
                     h_fxp = Fxp(x, signed=True, n_word=16, n_frac=8)
                     txtFile.write("val:" + h_fxp.bin())
                     txtFile.write("\n")
コード例 #3
0
word_bits = 16
frac_bits = 11

error = []

for f_ in files:
    with open(f_, 'r') as handle:
        data = np.genfromtxt(handle, delimiter=',')
        fxp_val = np.zeros_like(data)
        fxp_bin = np.ndarray(data.shape, dtype='U16')
        for line in range(len(data)):
            if "bias" in f_:
                fxp_sample = Fxp(data[line], True, word_bits, frac_bits)
                fxp_val[line] = fxp_sample.get_val()
                fxp_bin[line] = fxp_sample.bin()
                error.append(
                    np.nan_to_num((data[line] - fxp_val[line]) / data[line]))
            else:
                for column in range(len(data[line])):
                    fxp_sample = Fxp(data[line][column], True, word_bits,
                                     frac_bits)
                    fxp_val[line][column] = fxp_sample.get_val()
                    fxp_bin[line][column] = fxp_sample.bin()
                    error.append(
                        np.nan_to_num(
                            (data[line][column] - fxp_val[line][column]) /
                            data[line][column]))
    with open('report.txt', 'a') as r:
        r.write(f_ + ' min: ' + str(np.min(fxp_val)) + ' - max: ' +
                str(np.max(fxp_val)) + '\n')
コード例 #4
0
import sys
sys.path.insert(1, '/Users/jingyuan/Desktop/dga/dga_detection_rnn')
from fxpmath import Fxp
import numpy as np

tanh_table_path = "conf/tanh_table.bin"
with open(tanh_table_path, 'wb') as binFile:
    for entry in range(10):
        xVal = -4 + entry * 8 / 9
        print(xVal)
        x_fxp = Fxp(xVal, signed=True, n_word=16, n_frac=12)
        print(x_fxp.bin())
        xTanh = np.tanh(xVal)
        print(xTanh)
        xTanh_fxp = Fxp(xTanh, signed=True, n_word=16, n_frac=12)
        print(xTanh_fxp.bin())
        binFile.write(x_fxp.bin().encode(encoding="ascii",
                                         errors="unknown char"))
        binFile.write(xTanh_fxp.bin().encode(encoding="ascii",
                                             errors="unknown char"))