def check_hypers(self, parent=''): super().check_hypers(parent=parent) if self.rate is None: self.rate = Hypers.FlatExp(parent + 'rate', shape=self.shape) if self.directions is None: self.directions = Hypers.FlatExp(parent + 'directions', shape=(self.p, self.shape)) self.hypers += [self.rate, self.directions]
def check_hypers(self, parent=''): super().check_hypers(parent=parent) if self.constant is None: self.constant = Hypers.Flat(parent + self.name + '_Constant') if self.coeff is None: self.coeff = Hypers.Flat(parent + self.name + '_Coeff', shape=self.shape) self.hypers += [self.constant, self.coeff]
def check_hypers(self, parent=''): if self.shift is None: self.shift = Hypers.Flat(parent + self.name + '_shift') if self.scale is None: self.scale = Hypers.FlatExp(parent + self.name + '_scale') if self.power is None: self.power = Hypers.FlatExp(parent + self.name + '_power') self.hypers += [self.shift, self.scale, self.power]
def check_hypers(self, parent=''): if self.a is None: self.a = Hypers.FlatExp(parent + self.name + '_a', shape=self.n) if self.b is None: self.b = Hypers.FlatExp(parent + self.name + '_b', shape=self.n) if self.c is None: self.c = Hypers.Flat(parent + self.name + '_c', shape=self.n) self.hypers += [self.a, self.b, self.c]
def check_hypers(self, parent=''): if self.shift is None: self.shift = Hypers.FlatExp(parent + self.name + '_shift', shape=self.n) if self.power is None: self.power = Hypers.FlatExp(parent + self.name + '_power', shape=self.n) if self.w is None: self.w = Hypers.FlatExp(parent + self.name + '_w', shape=self.n) self.hypers += [self.shift, self.power, self.w]
def check_hypers(self, parent=''): if self.lower is None: self.lower = Hypers.Flat(parent + self.name + '_lower') if self.high is None: self.high = Hypers.FlatExp(parent + self.name + '_high') if self.location is None: self.location = Hypers.Flat(parent + self.name + '_location') if self.scale is None: self.scale = Hypers.FlatExp(parent + self.name + '_scale') self.hypers += [self.lower, self.high, self.location, self.scale]
def check_hypers(self, parent=''): super().check_hypers(parent=parent) if self.freq is None: self.freq = Hypers.FlatExp(parent + self.name + '_freq', shape=self.shape) if self.rate is None: self.rate = Hypers.FlatExp(parent + self.name + '_rate', shape=self.shape) if isinstance(self.rate, tt.TensorVariable): self.hypers += [self.rate] if isinstance(self.freq, tt.TensorVariable): self.hypers += [self.freq]
def check_hypers(self, parent=''): super().check_hypers(parent=parent) if self.rate is None: self.rate = Hypers.FlatExp(parent + 'rate', shape=self.shape) self.hypers += [self.rate]
def check_hypers(self, parent=''): super().check_hypers(parent=parent) if self.bias is None: self.bias = Hypers.FlatExp(parent + 'bias') self.hypers += [self.bias]
def check_hypers(self, parent=''): super().check_hypers(parent=parent) if self.bias is None: self.bias = Hypers.Flat(parent + self.name + '_Bias') self.hypers += [self.bias]
def check_hypers(self, parent=''): if self.shift is None: self.shift = Hypers.Flat(parent + self.name + '_shift') self.hypers += [self.shift]
def check_hypers(self, parent=''): super().check_hypers(parent=parent) if self.alpha is None: self.alpha = Hypers.FlatExp(parent + self.name + '_alpha') self.hypers += [self.alpha]
def check_hypers(self, parent=''): if self.var is None: self.var = Hypers.FlatExp(parent + self.name + '_var') if isinstance(self.var, tt.TensorVariable): self.hypers += [self.var] self.metric.check_hypers(parent + self.name + '_')