コード例 #1
0
def simulation_random_walk(params):

    STPG = read_problem("datasets", "ORLibrary", params["dataset"])

    crossover = CrossoverRandomWalkRST(STPG)
    evaluation = EvaluateEdgeSet(STPG)
    mutate = MutationReplaceByRandomEdge(STPG)

    output_data_dir = os.path.join("data", "test", "edgeset", STPG.name)
    tracker = DataTracker(params['runtrial'], target=output_data_dir)

    population = (GPopulation(
        chromosomes=[
            gen_random_walk(STPG) for _ in range(params["population_size"])
        ],
        eval_function=evaluation,
        maximize=True).evaluate().normalize(
            norm_function=normalize).callback(update_best))

    evol = (Evolution().evaluate().normalize(
        norm_function=normalize).callback(update_best).callback(
            tracker.log_evaluation).select(selection_func=roullete).crossover(
                combiner=crossover).mutate(
                    mutate_function=mutate,
                    probability=params['tx_mutation']).callback(
                        update_generation).callback(display, every=100))

    with Stagnation(interval=params["stagnation_interval"]), \
        BestKnownReached(global_optimum=params['global_optimum']):
        result = population.evolve(evol, n=params["n_iterations"])

    tracker.log_simulation(params, STPG, result)
    tracker.report()

    print(result.stoppedby)
コード例 #2
0
def simulation(simulation_name, params):

    datasets_folder = path.join("datasets", "ORLibrary")
    filename = path.join(datasets_folder, params["dataset"])
    STPG = ReaderORLibrary().parser(filename)

    print("STPG information", '\n', 10 * '- ', '\n')
    print("Trial: ", parameters['runtrial'])
    print('Instance: ', STPG.name)
    print('Best Known cost: ', params['global_optimum'])
    print("Nro. Node:", STPG.nro_nodes)
    print("Nro. Edges:", STPG.nro_edges)
    print("Nro. Terminals:", STPG.nro_terminals)
    # print("Terminals: \n", STPG.terminals)

    output_folder = path.join("data", simulation_name, STPG.name)
    tracker = DataTracker(params['runtrial'], target=output_folder)

    generator = GenerateBasedPrimRST(STPG)
    evaluator = EvaluateTreeGraph(STPG)
    crossover = CrossoverPrimRST(STPG)
    prunner = Prunning(STPG)
    mut_prim = PrimBasedMutation(STPG)
    replace_random = ReplaceByRandomEdge(STPG)

    population = (GPopulation(
        chromosomes=[generator() for _ in range(params["population_size"])],
        eval_function=evaluator,
        maximize=True).evaluate().normalize(
            norm_function=normalize).callback(update_best))

    evol = (Evolution().evaluate().normalize(norm_function=normalize).callback(
        update_best).callback(tracker.log_evaluation).select(
            selection_func=roullete).crossover(combiner=crossover).mutate(
                mutate_function=replace_random, probability=0.2).mutate(
                    mutate_function=mut_prim, probability=0.2).mutate(
                        mutate_function=prunner,
                        probability=0.2).callback(update_generation).callback(
                            display, every=100))

    with Stagnation(interval=params["stagnation_interval"]), \
         BestKnownReached(global_optimum=params['global_optimum']):
        result = population.evolve(evol, n=params["n_iterations"])

    tracker.log_simulation(params, STPG, result)

    best_overall = result.documented_best
    test, response = is_steiner_tree(best_overall.chromosome, STPG)

    tracker.log_bestIndividual(best_overall, test, response)

    tracker.report()
コード例 #3
0
def simulation(simulation_name, params: dict, get_evol: callable):

    STPG = read_problem("datasets", "ORLibrary", params["dataset"])

    lenght = STPG.nro_nodes - STPG.nro_terminals

    tracker = DataTracker(params['runtrial'],
                          target=os.path.join("data", simulation_name,
                                              STPG.name))

    population = (GPopulation(
        chromosomes=[
            random_binary(lenght) for _ in range(params["population_size"])
        ],
        eval_function=EvaluateKruskalBased(STPG,
                                           penality_function=lambda k:
                                           (k - 1) * 100),
        maximize=True).evaluate().normalize(
            norm_function=normalize).callback(update_best))

    evol = get_evol(STPG, tracker, params)

    # with Stagnation(interval=params["stagnation_interval"]), \
    # with BestSteinerTreeReachead(global_optimum=params["global_optimum"],
    #                             STPG=STPG,
    #                             decoder=Coder(STPG).binary2treegraph,
    #                             ):
    with Stagnation(interval=params["stagnation_interval"]), \
         BestKnownReached(global_optimum=params['global_optimum']):
        result = population.evolve(evol, n=params["n_iterations"])

    tracker.log_simulation(params, STPG, result)
    tracker.report()

    print(result.stoppedby)

    return result