コード例 #1
0
    def test_get_variables_function(self):
        def check(variables):
            self.assertIsInstance(variables[0], PopulationSizeVariable)
            self.assertIsInstance(variables[1], PopulationSizeVariable)
            self.assertIsInstance(variables[2], PopulationSizeVariable)
            self.assertIsInstance(variables[3], MigrationVariable)
            self.assertEqual(variables[3].units, "genetic")
            self.assertIsInstance(variables[4], TimeVariable)
            self.assertEqual(variables[4].units, "physical")
            self.assertIsInstance(variables[5], FractionVariable)
            self.assertIsInstance(variables[6], GrowthRateVariable)
            self.assertEqual(variables[6].units,
                             "universal")  # TODO it is not correct behavior
            self.assertIsInstance(variables[7], SelectionVariable)

        p_ids = ['nu1', 'nu2', 'n', 'm_gen', 't_phys', 'p', 'g_1', 'gamma']
        lower_bound = [1e-2, 1e-2, 1e-5, 0, 0, 0, -1e-3, 0]
        upper_bound = [10, 1, 3, 4, 10000, 1, 1e-3, 5]

        variables = get_variables(p_ids, lower_bound, upper_bound)
        check(variables)
        for var, lb, ub in zip(variables, lower_bound, upper_bound):
            self.assertEqual(var.domain[0], lb)
            self.assertEqual(var.domain[1], ub)

        variables = get_variables(p_ids, None, None)
        check(variables)
        for var in variables:
            if var.units != "physical":
                self.assertEqual(list(var.domain),
                                 list(var.__class__.default_domain))
            else:
                self.assertEqual(var.name, "t_phys")
                self.assertNotEqual(list(var.domain),
                                    list(var.__class__.default_domain))

        variables = get_variables(None, lower_bound, upper_bound)
        for var, lb, ub in zip(variables, lower_bound, upper_bound):
            self.assertIsInstance(var, ContinuousVariable)
            self.assertEqual(var.domain[0], lb)
            self.assertEqual(var.domain[1], ub)

        self.assertRaises(AssertionError, get_variables, None, None, None)
        self.assertRaises(AssertionError, get_variables, p_ids, None,
                          upper_bound)
        self.assertRaises(AssertionError, get_variables, p_ids, lower_bound,
                          None)
コード例 #2
0
ファイル: test_cli.py プロジェクト: n8ron/GADMA
    def test_get_variables_function(self):

        def check(variables):
            self.assertIsInstance(variables[0], PopulationSizeVariable)
            self.assertIsInstance(variables[1], PopulationSizeVariable)
            self.assertIsInstance(variables[2], PopulationSizeVariable)
            self.assertIsInstance(variables[3], MigrationVariable)
            self.assertIsInstance(variables[4], TimeVariable)
            self.assertIsInstance(variables[5], FractionVariable)

        p_ids = ['nu1', 'nu2', 'n', 'm', 't', 'p']
        lower_bound = [1e-2, 1e-2, 1e-5, 0, 0, 0]
        upper_bound = [10, 1, 3, 4, 6, 1]

        variables = get_variables(p_ids, lower_bound, upper_bound)
        check(variables)
        for var, lb, ub in zip(variables, lower_bound, upper_bound):
            self.assertEqual(var.domain[0], lb)
            self.assertEqual(var.domain[1], ub)

        variables = get_variables(p_ids, None, None)
        check(variables)
        for var in variables:
            self.assertEqual(list(var.domain),
                             list(var.__class__.default_domain))

        variables = get_variables(None, lower_bound, upper_bound)
        for var, lb, ub in zip(variables, lower_bound, upper_bound):
            self.assertIsInstance(var, ContinuousVariable)
            self.assertEqual(var.domain[0], lb)
            self.assertEqual(var.domain[1], ub)

        self.assertRaises(AssertionError, get_variables, None, None, None)
        self.assertRaises(AssertionError, get_variables, p_ids,
                          None, upper_bound)
        self.assertRaises(AssertionError, get_variables, p_ids,
                          lower_bound, None)
コード例 #3
0
ファイル: test_models.py プロジェクト: ctlab/GADMA
    def test_code_generation(self):
        # old format
        warnings.filterwarnings(action='ignore',
                                category=UserWarning,
                                module='.*\.dadi_moments_common',
                                lineno=350)
        # missed lines in vcf
        warnings.filterwarnings(action='ignore',
                                category=UserWarning,
                                module='.*\.dadi_moments_common',
                                lineno=693)
        warnings.filterwarnings(action='ignore',
                                category=UserWarning,
                                module='.*\.dadi_moments_common',
                                lineno=703)
        # repeats in vcf file
        warnings.filterwarnings(action='ignore',
                                category=UserWarning,
                                module='.*\.dadi_moments_common',
                                lineno=710)
        # Theta0 is not set and translation of Nanc variable with theta0=1 could be wrong
        warnings.filterwarnings(action='ignore',
                                category=UserWarning,
                                module='.*\.dadi_moments_common',
                                lineno=237)
        warnings.filterwarnings(action='ignore',
                                category=UserWarning,
                                module='.*\.momi_engine',
                                lineno=89)
        nu1 = PopulationSizeVariable('nu1')
        nu2 = PopulationSizeVariable('nu2')
        nu3 = PopulationSizeVariable('nu3')
        t = TimeVariable('t1')
        t2 = TimeVariable('t2')
        m = MigrationVariable('m')
        s = SelectionVariable('s')
        d1 = DynamicVariable('d1')
        d2 = DynamicVariable('d2')
        f = FractionVariable('f')
        h = FractionVariable('h')
        f1 = FractionVariable('f1')
        f2 = FractionVariable('f2')
        fxnu1 = Multiplication(f, nu1)
        tf = Multiplication(f, t)
        t_copy = copy.deepcopy(t)

        model1 = EpochDemographicModel()
        model1.add_epoch(t, [nu1])
        model1.add_split(0, [nu1, nu2])
        model1.add_epoch(t, [nu2, fxnu1], [[0, m], [0, 0]], [d1, d2])
        model1.add_split(1, [nu2, nu1])
        model1.add_epoch(t, [nu1, nu2, nu1], None, None)

        model2 = EpochDemographicModel()
        model2.add_epoch(t, [nu1])
        model2.add_split(0, [nu1, nu2])
        model2.add_epoch(0.5, [nu2, fxnu1], [[0, m], [0, 0]], [d1, d2], [0, s])
        model2.add_split(1, [nu2, nu1])
        model2.add_epoch(t, [nu1, nu2, nu1], None, None, [s, 0, s])

        model2.get_involved_for_split_time_vars(1)

        model3 = EpochDemographicModel()
        model3.add_epoch(t, [nu1])
        model3.add_split(0, [nu1, nu2])
        model3.add_epoch(tf, [nu2, fxnu1], [[0, m], [0, 0]], [d1, d2], [0, s],
                         [0.1, 0.8])
        model3.add_split(1, [nu2, nu1])
        model3.add_epoch(t, [nu1, nu2, nu1], None, [d1, 'Sud', 'Sud'],
                         [s, 0, s], [h, 0.5, 0])

        # create models with ancestral size
        Nanc = PopulationSizeVariable("Nanc", units="physical")
        Nu2 = PopulationSizeVariable("N2", units="physical")
        T3 = TimeVariable("T3", units="physical")

        model4 = EpochDemographicModel(Nanc_size=Nanc)
        model4.add_epoch(t, [nu1])
        model4.add_split(0, [nu1, nu2])
        model4.add_epoch(t, [nu2, fxnu1], [[0, m], [0, 0]], [d1, d2])

        model5 = EpochDemographicModel(Nanc_size=Nanc)
        model5.add_epoch(t, [nu1])
        model5.add_split(0, [nu1, nu2])
        model5.add_epoch(T3, [0.5, fxnu1], [[0, m], [0, 0]], ["Sud", d2])
        model5.add_split(1, [nu2, nu1])
        model5.add_epoch(t, [nu1, nu2, nu1], None, None)

        model6 = EpochDemographicModel(Nanc_size=Nanc)
        model6.add_epoch(t, [nu1])
        model6.add_split(0, [nu1, nu2])
        model6.add_epoch(T3, [Nu2, fxnu1], [[0, m], [0, 0]], [d1, d2])
        model6.add_split(1, [nu2, nu1])
        model6.add_epoch(t, [nu1, nu2, nu1], None, None)
        model6.add_inbreeding([f1, f2, 0.5])

        model_struct_1 = StructureDemographicModel(
            initial_structure=[2, 1, 1],
            final_structure=[2, 1, 1],
            has_migs=True,
            has_sels=False,
            has_dyns=True,
            sym_migs=True,
            frac_split=True,
        )
        model_struct_2 = StructureDemographicModel(
            initial_structure=[2, 1, 1],
            final_structure=[2, 1, 1],
            has_anc_size=True,
            has_migs=True,
            has_sels=False,
            has_dyns=True,
            sym_migs=True,
            frac_split=True,
        )

        values = {
            nu1: 2,
            nu2: 0.5,
            nu3: 0.5,
            t_copy: 0.3,
            t2: 0.5,
            m: 0.1,
            s: 0.1,
            d1: 'Exp',
            d2: 'Lin',
            f: 0.5,
            h: 0.3,
            f1: 0.1,
            f2: 0.3,
            Nanc: 10000,
            Nu2: 5000,
            T3: 4000,
            'nu1F': 1.0,
            'nu2B': 0.7,
            'nu2F': 1.0,
            'T': 0.5,
            'Tp': 0.3,
            'N_1F': 20000,
            'r_2': -1e-5,
            'N_2F': 5000,
            'T_1': 500,
            'T_2': 100
        }

        for engine in all_available_engines():
            #print("!!!", engine)
            models = [model1, model2, model3, model5, model6]
            if engine.id == "momentsLD":
                # momentsLD has problems with model 5 and 6 because of physical values
                models = models[:3]
            if engine.can_evaluate:
                customfile = os.path.join(
                    EXAMPLE_FOLDER, "MODELS",
                    f"demographic_model_{engine.id}_3pops.py")

                spec = importlib.util.spec_from_file_location(
                    f"module_{engine.id}", customfile)
                module = importlib.util.module_from_spec(spec)
                spec.loader.exec_module(module)
                sys.modules[f'module_{engine.id}'] = module
                func = module.model_func
                par_labels = get_par_labels_from_file(customfile)
                variables = get_variables(par_labels,
                                          None,
                                          None,
                                          engine=engine.id)

                model7 = CustomDemographicModel(func, variables)
                if engine.id == "momentsLD":
                    model8 = copy.deepcopy(model7)
                    model7.fixed_anc_size = 10000
                    model8.has_anc_size = True
                    model8.add_variable(
                        PopulationSizeVariable("Nanc", units="physical"))

                    model8.fix_variable(model8.variables[-1], 10000)
                    model8.unfix_variable(model8._variables[-1])
                    models.append(model8)
                models.append(model7)
            models.append(model_struct_1)
            models.append(model_struct_2)

            for ind, model in enumerate(models):
                if engine.id == "momentsLD":
                    dataset = self._vcf_datasets_ld_precomputed()
                else:
                    dataset = self._sfs_datasets()
                for description, data in dataset:
                    msg = f"for model {ind + 1} and {description} data and " \
                          f"{engine.id} engine"
                    #print(msg)
                    if engine.id == "momi" and isinstance(
                            model, StructureDemographicModel):
                        if not model.has_anc_size:
                            continue
                    if engine.id == 'dadi':
                        options = {'pts': [4, 6, 8]}
                        args = (options['pts'], )
                    else:
                        options = {}
                        args = ()

                    if isinstance(model, StructureDemographicModel):
                        input_values = {
                            var.name: 0.5 + np.random.uniform(-0.2, 0.2)
                            if not isinstance(var, DiscreteVariable) else "Sud"
                            for var in model.variables
                        }
                        if model.has_anc_size:
                            input_values[model.Nanc_size.name] = 10000
                    else:
                        input_values = copy.copy(values)

                    if engine.id in ["momi", "momentsLD"]:
                        # there is an error in momi for that case
                        # data for moments was simulated with msprime, which can't work with Lin DynVar
                        if description == "fs without pop labels":
                            continue
                        for key in input_values:
                            if input_values[key] == "Lin":
                                input_values[key] = "Exp"
                    data.sequence_length = 50818468
                    # we read data but save only updated data_holder
                    engine.data = data
                    engine.inner_data = None
                    engine.model = model
                    Nanc = None
                    if engine.id not in ["dadi", "moments"]:
                        Nanc = 10000
                        new_model = copy.deepcopy(model)
                        if new_model.has_anc_size and isinstance(
                                new_model,
                                StructureDemographicModel) and isinstance(
                                    new_model.Nanc_size, Variable):
                            input_values[new_model.Nanc_size.name] = Nanc
                        else:
                            new_model.Nanc_size = Nanc
                        new_model.mutation_rate = 1.25e-8
                        engine.model = new_model
                        moments.LD.Inference._varcov_inv_cache = {}

                    cmd = engine.generate_code(input_values,
                                               None,
                                               *args,
                                               nanc=Nanc)
                    #print(cmd)
                    if engine.can_evaluate:
                        # read data
                        engine.data = data
                        true_ll = engine.evaluate(input_values, **options)
                        d = {}
                        exec(cmd, d)

                        msg += f": {true_ll} != {d['ll_model']}"
                        self.assertTrue(np.allclose(true_ll, d['ll_model']),
                                        msg=msg)
                        if (description == "dadi snp file"
                                and engine.id in ["dadi", "moments"]):
                            engine.data_holder.population_labels = None
                            self.assertRaises(ValueError,
                                              engine.generate_code,
                                              input_values,
                                              None,
                                              *args,
                                              nanc=Nanc)
                        if description == "fs without pop labels":
                            engine.data_holder.population_labels = None
                            engine.generate_code(input_values,
                                                 None,
                                                 *args,
                                                 nanc=Nanc)