コード例 #1
0
def load_parameters_from_python_file(filename, as_module=False):
    if not as_module:
        f = support.check_file_existence(filename)
        try:
            module = imp.load_source('module', f)
        except Exceprint, e:
            support.error('File ' + filename + " is not valid python file.",
                          error_instance=e)
コード例 #2
0
def main():
    parser = argparse.ArgumentParser(
        'GADMA module for runs of local search on bootstrapped data. Is needed for calculating confidence intervals.'
    )
    parser.add_argument('-b',
                        '--boots',
                        metavar="<dir>",
                        required=True,
                        help='Directory where bootstrapped data is located.')
    parser.add_argument(
        '-d',
        '--dem_model',
        metavar="<filename>",
        required=True,
        help=
        'File with demographic model. Should contain `model_func` or `generated_model` function. One can put there several extra parameters and they will be taken automatically, otherwise one will need to enter them manually. Such parameters are:\n\t1) p0 (or popt) - initial parameters values\n\t2) lower_bound - list of lower bounds for parameters values\n\t4) upper_bound - list of upper bounds for parameters values\n\t5) par_labels/param_labels - list of string names for parameters 6) pts - pts for dadi (if there is no pts then moments will be run automatically).'
    )
    parser.add_argument('-o',
                        '--output',
                        metavar="<dir>",
                        required=True,
                        help='Output directory.')
    parser.add_argument('-j',
                        '--jobs',
                        metavar="N",
                        type=int,
                        default=1,
                        help='Number of threads for parallel run.')

    parser.add_argument(
        '--opt',
        metavar="log/powell",
        type=str,
        default='log',
        help=
        'Local search algorithm, by now it can be:\n\t1) `log` - Inference.optimize_log\n\t2) `powell` - Inference.optimize_powell.'
    )
    parser.add_argument(
        '-p',
        '--params',
        metavar="<filename>",
        type=str,
        default=None,
        help=
        'Filename with parameters, should be valid python file. Parameters are presented in -d/--dem_model option description upper.'
    )

    args = parser.parse_args()

    output = support.ensure_dir_existence(args.output, False)
    all_boot = gadma.Inference.load_bootstrap_data_from_dir(
        args.boots, return_filenames=True)

    print(str(len(all_boot)) + ' bootstrapped data found.')

    #extract model_func, we cannot put it to function as multiprocessing need pickleable functions
    args.dem_model = support.check_file_existence(args.dem_model)
    try:
        file_with_model_func = imp.load_source('module', args.dem_model)
    except Exception, e:
        support.error('File ' + args.dem_model + " is not valid python file.",
                      error_instance=e)
コード例 #3
0
def main():
    parser = argparse.ArgumentParser(
        'GADMA module for calculating confidence intervals from the result table of local search runs on bootstrapped data.'
    )
    parser.add_argument(
        'input_filename',
        metavar='<filename>',
        help=
        'Filename (.csv or .pkl) with result from local search runs on bootstrapped data. Output of gadma-run_ls_on_boot_data.'
    )
    parser.add_argument(
        '--log',
        required=False,
        action='store_true',
        help=
        'If log then logarithm will be used to calculate confidence intervals.'
    )
    parser.add_argument('--tex',
                        required=False,
                        action='store_true',
                        help='Tex output.')
    parser.add_argument('--acc',
                        required=False,
                        metavar='N',
                        type=int,
                        default=5,
                        help='Accuracy of output (dafault: 5).')

    args = parser.parse_args()
    filename = support.check_file_existence(args.input_filename)
    ext = filename.split('.')[-1]
    if ext == 'csv':
        df = pd.read_csv(filename, index_col=0)
    elif ext == 'pkl':
        df = pd.read_pickle(filename)

    a = df.values
    if args.log:
        a = np.log(a)

    means = np.mean(a, axis=0)
    stds = np.std(a, axis=0)

    for m, s, x, par_name in zip(means, stds, a.T, df.columns):
        l = m - 1.96 * s
        u = m + 1.96 * s
        if args.log:
            l = np.exp(l)
            u = np.exp(u)
        k2, p = stats.normaltest(x)
        if p < 0.05:
            normtest_str = 'data looks '
            if args.log:
                normtest_str += 'log-normal (fail to reject H0)'
            else:
                normtest_str += 'normal (fail to reject H0)'
        else:
            normtest_str = 'data does not look '
            if args.log:
                normtest_str += 'log-normal (reject H0)'
            else:
                normtest_str += 'normal (reject H0)'
        normtest_str += ' p-value=%.2e' % p
        if args.tex:
            format_string = '%s:\t$[%.' + str(args.acc) + 'f - %.' + str(
                args.acc) + 'f]$\t%s'
        else:
            format_string = '%s:\t%.' + str(args.acc) + 'f\t%.' + str(
                args.acc) + 'f\t%s'
        print(format_string % (par_name.strip(), l, u, normtest_str))