model = serial.load('/data/lisatmp/goodfeli/darpa_s3c.pkl') preprocessor = serial.load( '/data/lisatmp/goodfeli/darpa_imagenet_patch_6x6_train_preprocessor.pkl' ) patchifier = ExtractGridPatches(patch_shape=(size, size), patch_stride=(1, 1)) preprocessor.items.insert(0, patchifier) extractor = FeatureExtractor(model=model, preprocessor=preprocessor) xavier = '/data/lisatmp/glorotxa/train' thumbnail = '/data/lisatmp/goodfeli/darpa_imagenet' feature = '/data/lisatmp/goodfeli/darpa_imagenet_features' from galatea.darpa_imagenet.utils import explore_images for img_path in explore_images(xavier, '.JPEG'): print img_path thumbnail_path = img_path.replace(xavier, thumbnail) thumbnail_path = thumbnail_path.replace('.JPEG', '.npy') if os.path.exists(thumbnail_path): feature_path = thumbnail_path.replace(thumbnail, feature) if not os.path.exists(feature_path): print 'making ' + feature_path X = np.load(thumbnail_path) X = extractor(X) np.save(feature_path, X) else: print 'No thumbnail!' report.write(img_path)
from galatea.darpa_imagenet.utils import explore_images from pylearn2.utils import serial from pylearn2.utils import image import numpy as np import os import time input_path = '/Tmp/glorotxa/train' output_path = '/Tmp/goodfeli/darpa_imagenet' image_shape = (32,32) created_subdirs = set([]) for image_path in explore_images(input_path): thumbnail_path = image_path.replace(input_path,output_path) thumbnail_path = thumbnail_path.replace('.JPEG','.npy') t1 = time.time() e = os.path.exists(thumbnail_path) t2 = time.time() print t2-t1 if e: continue thumbnail_subdir = '/'.join(thumbnail_path.split('/')[:-1]) if thumbnail_subdir not in created_subdirs: serial.mkdir(thumbnail_subdir) created_subdirs = created_subdirs.union([thumbnail_subdir])
from galatea.darpa_imagenet.utils import explore_images from pylearn2.utils import serial from pylearn2.utils import image import numpy as np import os import time input_path = '/data/lisatmp/glorotxa/val' output_path = '/data/lisatmp/goodfeli/darpa_imagenet_valid' image_shape = (32, 32) created_subdirs = set([]) for image_path in explore_images(input_path, '.JPEG'): thumbnail_path = image_path.replace(input_path, output_path) thumbnail_path = thumbnail_path.replace('.JPEG', '.npy') t1 = time.time() e = os.path.exists(thumbnail_path) t2 = time.time() print t2 - t1 if e: continue thumbnail_subdir = '/'.join(thumbnail_path.split('/')[:-1]) if thumbnail_subdir not in created_subdirs: serial.mkdir(thumbnail_subdir) created_subdirs = created_subdirs.union([thumbnail_subdir])
from galatea.darpa_imagenet.utils import explore_images from pylearn2.utils import serial from pylearn2.utils import image import numpy as np import os import time input_path = '/data/lisatmp/glorotxa/train' output_path = '/data/lisatmp/goodfeli/darpa_imagenet' image_shape = (32, 32) created_subdirs = set([]) for image_path in explore_images(input_path): thumbnail_path = image_path.replace(input_path, output_path) thumbnail_path = thumbnail_path.replace('.JPEG', '.npy') t1 = time.time() e = os.path.exists(thumbnail_path) t2 = time.time() print t2 - t1 if e: continue thumbnail_subdir = '/'.join(thumbnail_path.split('/')[:-1]) if thumbnail_subdir not in created_subdirs: serial.mkdir(thumbnail_subdir) created_subdirs = created_subdirs.union([thumbnail_subdir])
model = serial.load('/data/lisatmp/goodfeli/darpa_s3c.pkl') preprocessor = serial.load('/data/lisatmp/goodfeli/darpa_imagenet_patch_6x6_train_preprocessor.pkl') patchifier = ExtractGridPatches( patch_shape = (size,size), patch_stride = (1,1) ) preprocessor.items.insert(0,patchifier) extractor = FeatureExtractor( model = model, preprocessor = preprocessor) xavier = '/data/lisatmp/glorotxa/val' thumbnail = '/data/lisatmp/goodfeli/darpa_imagenet_valid_thumb' feature = '/data/lisatmp/goodfeli/darpa_imagenet_valid_features' from galatea.darpa_imagenet.utils import explore_images for img_path in explore_images(xavier,'.JPEG'): print img_path thumbnail_path = img_path.replace(xavier,thumbnail) thumbnail_path = thumbnail_path.replace('.JPEG','.npy') if os.path.exists(thumbnail_path): feature_path = thumbnail_path.replace(thumbnail,feature) if not os.path.exists(feature_path): print 'making '+feature_path X = np.load(thumbnail_path) X = extractor(X) np.save(feature_path,X) else: print 'No thumbnail!' report.write(img_path)