コード例 #1
0
ファイル: discrim_face_or_not.py プロジェクト: vd114/galatea
too lazy to fix merge conflict, fix it if you need this later
probably easier to just rewrite from scratch
<<<<<<< HEAD
import numpy as np

x = raw_input('use esp game dataset?')

if x == 'y':
    from galatea.esp import Im2Word
    dataset = Im2Word(start=99000, stop=100000
                          )
else:
    from galatea.esp import FinalIm2Word
    dataset = FinalIm2Word()

x = raw_input('use people?')


people_mask = np.zeros((dataset.y.shape[0],), dtype='bool')

for word in ['face', 'person', 'people', 'man', 'men', 'woman', 'women',
        'child', 'children', 'kid', 'kids', 'guy', 'boy', 'boys', 'girl',
        'girls', 'infant', 'infants', 'baby', 'babies']:
    if word not in dataset.words:
        continue
    idx = dataset.words.index(word)
    mask = dataset.y[:,idx].astype('bool')
    people_mask = people_mask | mask

if x == 'y':
    mask = people_mask
コード例 #2
0
from galatea.esp import FinalIm2Word
import numpy as np

dataset = FinalIm2Word(start=0, stop=500
                          )

max_word = 50

dataset.y = dataset.y[:, 0:max_word]

from pylearn2.utils import serial

model = serial.load('rectifier_7.pkl')

last_layer = model.layers[-1]
last_layer.b.set_value(last_layer.b.get_value()[0:max_word])
W, = last_layer.transformer.get_params()
W.set_value(W.get_value()[:,0:max_word])

import theano.tensor as T
X = T.matrix()
X.tag.test_value = dataset.X
state = model.fprop(X)
target = T.matrix()
target.tag.test_value = dataset.y
wrong_target = T.matrix()
wrong_target.tag.test_value = dataset.y

right_cost = model.layers[-1].kl(Y=target, Y_hat=state)
wrong_cost = model.layers[-1].kl(Y=wrong_target, Y_hat=state)
コード例 #3
0
ファイル: final_f1_hist.py プロジェクト: vd114/galatea
from galatea.esp import FinalIm2Word

valid = FinalIm2Word()

from pylearn2.utils import serial

model = serial.load('rectifier_7.pkl')

import theano.tensor as T
X = T.matrix()
state = model.fprop(X)
target = T.matrix()

y_hat = state > 0.5
y = target > 0.5

y = T.cast(y, state.dtype)
y_hat = T.cast(y_hat, state.dtype)

tp = (y * y_hat).sum(axis=0)
fp = ((1 - y) * y_hat).sum(axis=0)
precision = tp / T.maximum(1., tp + fp)

recall = tp / T.maximum(1., y.sum(axis=0))

f1 = 2. * precision * recall / T.maximum(1, precision + recall)

from theano import function

ttp = tp.sum()
tpredp = y.sum()
コード例 #4
0
from galatea.esp import FinalIm2Word
import numpy as np

dataset = FinalIm2Word(start=00, stop=1000)

from pylearn2.utils import serial

model = serial.load('rectifier_7_best.pkl')

import theano.tensor as T
X = T.matrix()
state = model.fprop(X)
target = T.matrix()
wrong_target = T.matrix()

right_cost = model.layers[-1].kl(Y=target, Y_hat=state)
wrong_cost = model.layers[-1].kl(Y=wrong_target, Y_hat=state)

acc = (wrong_cost > right_cost).mean()

from theano import function

f = function([X, target, wrong_target], acc)

wrong_target = dataset.y.copy()
used = np.zeros((dataset.y.shape[0], ), dtype='bool')
minmin = np.inf
for i in xrange(wrong_target.shape[0]):
    dists = np.square(dataset.y - dataset.y[i, :]).sum(axis=1)
    dists[i] = np.inf
    dists[used] = np.inf