コード例 #1
0
ファイル: execute.py プロジェクト: thakurmm/galaxy
    def on_text(self):
        if self._on_text is None:
            collection_names = [
                "collection %d" % c.hid
                for c in self.collection_info.collections.values()
            ]
            self._on_text = on_text_for_names(collection_names)

        return self._on_text
コード例 #2
0
ファイル: execute.py プロジェクト: msGenDev/galaxy-central
    def create_output_collections( self, trans, history, params ):
        # TODO: Move this function - it doesn't belong here but it does need
        # the information in this class and potential extensions.
        if self.failed_jobs > 0:
            return []

        structure = self.collection_info.structure
        collections = self.collection_info.collections.values()

        # params is just one sample tool param execution with parallelized
        # collection replaced with a specific dataset. Need to replace this
        # with the collection and wrap everything up so can evaluate output
        # label.
        params.update( self.collection_info.collections )  # Replace datasets
                                                           # with source collections
                                                           # for labelling outputs.

        collection_names = map( lambda c: "collection %d" % c.hid, collections )
        on_text = on_text_for_names( collection_names )

        collections = {}

        implicit_inputs = list(self.collection_info.collections.iteritems())
        for output_name, outputs_datasets in self.output_datasets_by_output_name.iteritems():
            if not len( structure ) == len( outputs_datasets ):
                # Output does not have the same structure, if all jobs were
                # successfully submitted this shouldn't have happened.
                log.warn( "Problem matching up datasets while attempting to create implicit dataset collections")
                continue
            output = self.tool.outputs[ output_name ]
            element_identifiers_for_datasets = structure.element_identifiers_for_datasets( trans, outputs_datasets )

            implicit_collection_info = dict(
                implicit_inputs=implicit_inputs,
                implicit_output_name=output_name,
                outputs_datasets=outputs_datasets
            )
            try:
                output_collection_name = self.tool_action.get_output_name(
                    output,
                    dataset=None,
                    tool=self.tool,
                    on_text=on_text,
                    trans=trans,
                    params=params,
                    incoming=None,
                    job_params=None,
                )
            except Exception:
                output_collection_name = "%s across %s" % ( self.tool.name, on_text )

            collection = trans.app.dataset_collections_service.create(
                trans=trans,
                parent=history,
                name=output_collection_name,
                element_identifiers=element_identifiers_for_datasets[ "element_identifiers" ],
                collection_type=structure.collection_type_description.collection_type,
                implicit_collection_info=implicit_collection_info,
            )
            collections[ output_name ] = collection

        self.created_collections = collections
コード例 #3
0
ファイル: execute.py プロジェクト: ksuderman/Galaxy
    def create_output_collections(self, trans, history, params):
        # TODO: Move this function - it doesn't belong here but it does need
        # the information in this class and potential extensions.
        if self.failed_jobs > 0:
            return []

        structure = self.collection_info.structure
        collections = self.collection_info.collections.values()

        # params is just one sample tool param execution with parallelized
        # collection replaced with a specific dataset. Need to replace this
        # with the collection and wrap everything up so can evaluate output
        # label.
        params.update(
            self.collection_info.collections
        )  # Replace datasets with source collections for labelling outputs.

        collection_names = map(lambda c: "collection %d" % c.hid, collections)
        on_text = on_text_for_names(collection_names)

        collections = {}

        implicit_inputs = list(self.collection_info.collections.iteritems())
        for output_name, outputs in self.outputs_by_output_name.iteritems():
            if not len(structure) == len(outputs):
                # Output does not have the same structure, if all jobs were
                # successfully submitted this shouldn't have happened.
                log.warning("Problem matching up datasets while attempting to create implicit dataset collections")
                continue
            output = self.tool.outputs[output_name]
            element_identifiers = structure.element_identifiers_for_outputs(trans, outputs)

            implicit_collection_info = dict(
                implicit_inputs=implicit_inputs, implicit_output_name=output_name, outputs=outputs
            )
            try:
                output_collection_name = self.tool.tool_action.get_output_name(
                    output,
                    dataset=None,
                    tool=self.tool,
                    on_text=on_text,
                    trans=trans,
                    history=history,
                    params=params,
                    incoming=None,
                    job_params=None,
                )
            except Exception:
                output_collection_name = "%s across %s" % (self.tool.name, on_text)

            child_element_identifiers = element_identifiers["element_identifiers"]
            collection_type = element_identifiers["collection_type"]
            collection = trans.app.dataset_collections_service.create(
                trans=trans,
                parent=history,
                name=output_collection_name,
                element_identifiers=child_element_identifiers,
                collection_type=collection_type,
                implicit_collection_info=implicit_collection_info,
            )
            for job in self.successful_jobs:
                # TODO: Think through this, may only want this for output
                # collections - or we may be already recording data in some
                # other way.
                if job not in trans.sa_session:
                    job = trans.sa_session.query(trans.app.model.Job).get(job.id)
                job.add_output_dataset_collection(output_name, collection)
            collections[output_name] = collection

        # Needed to flush the association created just above with
        # job.add_output_dataset_collection.
        trans.sa_session.flush()
        self.implicit_collections = collections
コード例 #4
0
ファイル: execute.py プロジェクト: katbeaulieu/galaxy-1
    def create_output_collections(self, trans, history, params):
        # TODO: Move this function - it doesn't belong here but it does need
        # the information in this class and potential extensions.
        if self.failed_jobs > 0:
            return []

        structure = self.collection_info.structure

        # params is just one sample tool param execution with parallelized
        # collection replaced with a specific dataset. Need to replace this
        # with the collection and wrap everything up so can evaluate output
        # label.
        params.update(
            self.collection_info.collections
        )  # Replace datasets with source collections for labelling outputs.

        collection_names = [
            "collection %d" % c.hid
            for c in self.collection_info.collections.values()
        ]
        on_text = on_text_for_names(collection_names)

        collections = {}

        implicit_inputs = list(self.collection_info.collections.items())
        for output_name, outputs in self.outputs_by_output_name.items():
            if not len(structure) == len(outputs):
                # Output does not have the same structure, if all jobs were
                # successfully submitted this shouldn't have happened.
                log.warning(
                    "Problem matching up datasets while attempting to create implicit dataset collections"
                )
                continue
            output = self.tool.outputs[output_name]
            element_identifiers = structure.element_identifiers_for_outputs(
                trans, outputs)

            implicit_collection_info = dict(implicit_inputs=implicit_inputs,
                                            implicit_output_name=output_name,
                                            outputs=outputs)
            try:
                output_collection_name = self.tool.tool_action.get_output_name(
                    output,
                    dataset=None,
                    tool=self.tool,
                    on_text=on_text,
                    trans=trans,
                    history=history,
                    params=params,
                    incoming=None,
                    job_params=None,
                )
            except Exception:
                output_collection_name = "%s across %s" % (self.tool.name,
                                                           on_text)

            child_element_identifiers = element_identifiers[
                "element_identifiers"]
            collection_type = element_identifiers["collection_type"]
            collection = trans.app.dataset_collections_service.create(
                trans=trans,
                parent=history,
                name=output_collection_name,
                element_identifiers=child_element_identifiers,
                collection_type=collection_type,
                implicit_collection_info=implicit_collection_info,
            )
            for job in self.successful_jobs:
                # TODO: Think through this, may only want this for output
                # collections - or we may be already recording data in some
                # other way.
                if job not in trans.sa_session:
                    job = trans.sa_session.query(trans.app.model.Job).get(
                        job.id)
                job.add_output_dataset_collection(output_name, collection)
            collections[output_name] = collection

        # Needed to flush the association created just above with
        # job.add_output_dataset_collection.
        trans.sa_session.flush()
        self.implicit_collections = collections
コード例 #5
0
ファイル: test_actions.py プロジェクト: yin-max/galaxy
 def assert_on_text_is(expected, *names):
     on_text = on_text_for_names(names)
     assert on_text == expected, "Wrong on text value %s, expected %s" % (
         on_text, expected)
コード例 #6
0
ファイル: test_actions.py プロジェクト: BinglanLi/galaxy
 def assert_on_text_is( expected, *names ):
     on_text = on_text_for_names( names )
     assert on_text == expected, "Wrong on text value %s, expected %s" % ( on_text, expected )
コード例 #7
0
ファイル: execute.py プロジェクト: ImmPortDB/immport-galaxy
    def on_text(self):
        if self._on_text is None:
            collection_names = ["collection %d" % c.hid for c in self.collection_info.collections.values()]
            self._on_text = on_text_for_names(collection_names)

        return self._on_text
コード例 #8
0
 def assert_on_text_is(expected, *names):
     on_text = on_text_for_names(names)
     assert on_text == expected, f"Wrong on text value {on_text}, expected {expected}"
コード例 #9
0
    def create_output_collections(self, trans, history, params):
        # TODO: Move this function - it doesn't belong here but it does need
        # the information in this class and potential extensions.
        if self.failed_jobs > 0:
            return []

        structure = self.collection_info.structure
        collections = self.collection_info.collections.values()

        # params is just one sample tool param execution with parallelized
        # collection replaced with a specific dataset. Need to replace this
        # with the collection and wrap everything up so can evaluate output
        # label.
        params.update(self.collection_info.collections)  # Replace datasets
        # with source collections
        # for labelling outputs.

        collection_names = map(lambda c: "collection %d" % c.hid, collections)
        on_text = on_text_for_names(collection_names)

        collections = {}

        implicit_inputs = list(self.collection_info.collections.iteritems())
        for output_name, outputs_datasets in self.output_datasets_by_output_name.iteritems(
        ):
            if not len(structure) == len(outputs_datasets):
                # Output does not have the same structure, if all jobs were
                # successfully submitted this shouldn't have happened.
                log.warn(
                    "Problem matching up datasets while attempting to create implicit dataset collections"
                )
                continue
            output = self.tool.outputs[output_name]
            element_identifiers_for_datasets = structure.element_identifiers_for_datasets(
                trans, outputs_datasets)

            implicit_collection_info = dict(implicit_inputs=implicit_inputs,
                                            implicit_output_name=output_name,
                                            outputs_datasets=outputs_datasets)
            try:
                output_collection_name = self.tool_action.get_output_name(
                    output,
                    dataset=None,
                    tool=self.tool,
                    on_text=on_text,
                    trans=trans,
                    params=params,
                    incoming=None,
                    job_params=None,
                )
            except Exception:
                output_collection_name = "%s across %s" % (self.tool.name,
                                                           on_text)

            collection = trans.app.dataset_collections_service.create(
                trans=trans,
                parent=history,
                name=output_collection_name,
                element_identifiers=element_identifiers_for_datasets[
                    "element_identifiers"],
                collection_type=structure.collection_type_description.
                collection_type,
                implicit_collection_info=implicit_collection_info,
            )
            collections[output_name] = collection

        self.created_collections = collections