コード例 #1
0
 def __populate_output_dataset_wrappers(self, param_dict, output_datasets, output_paths, job_working_directory):
     output_dataset_paths = dataset_path_rewrites(output_paths)
     for name, hda in output_datasets.items():
         # Write outputs to the working directory (for security purposes)
         # if desired.
         real_path = hda.file_name
         if real_path in output_dataset_paths:
             dataset_path = output_dataset_paths[real_path]
             param_dict[name] = DatasetFilenameWrapper(hda, dataset_path=dataset_path)
             try:
                 open(dataset_path.false_path, 'w').close()
             except EnvironmentError:
                 pass  # May well not exist - e.g. Pulsar.
         else:
             param_dict[name] = DatasetFilenameWrapper(hda)
         # Provide access to a path to store additional files
         # TODO: path munging for cluster/dataset server relocatability
         store_by = getattr(hda.dataset.object_store, "store_by", "id")
         file_name = "dataset_%s_files" % getattr(hda.dataset, store_by)
         param_dict[name].files_path = os.path.abspath(os.path.join(job_working_directory, "working", file_name))
     for out_name, output in self.tool.outputs.items():
         if out_name not in param_dict and output.filters:
             # Assume the reason we lack this output is because a filter
             # failed to pass; for tool writing convienence, provide a
             # NoneDataset
             ext = getattr(output, "format", None)  # populate only for output datasets (not collections)
             param_dict[out_name] = NoneDataset(datatypes_registry=self.app.datatypes_registry, ext=ext)
コード例 #2
0
ファイル: evaluation.py プロジェクト: AAFC-MBB/galaxy-1
 def __populate_output_dataset_wrappers(self, param_dict, output_datasets, output_paths, job_working_directory):
     output_dataset_paths = dataset_path_rewrites( output_paths )
     for name, hda in output_datasets.items():
         # Write outputs to the working directory (for security purposes)
         # if desired.
         real_path = hda.file_name
         if real_path in output_dataset_paths:
             dataset_path = output_dataset_paths[ real_path ]
             param_dict[name] = DatasetFilenameWrapper( hda, dataset_path=dataset_path )
             try:
                 open( dataset_path.false_path, 'w' ).close()
             except EnvironmentError:
                 pass  # May well not exist - e.g. Pulsar.
         else:
             param_dict[name] = DatasetFilenameWrapper( hda )
         # Provide access to a path to store additional files
         # TODO: path munging for cluster/dataset server relocatability
         param_dict[name].files_path = os.path.abspath(os.path.join( job_working_directory, "dataset_%s_files" % (hda.dataset.id) ))
         for child in hda.children:
             param_dict[ "_CHILD___%s___%s" % ( name, child.designation ) ] = DatasetFilenameWrapper( child )
     for out_name, output in self.tool.outputs.iteritems():
         if out_name not in param_dict and output.filters:
             # Assume the reason we lack this output is because a filter
             # failed to pass; for tool writing convienence, provide a
             # NoneDataset
             ext = getattr( output, "format", None )  # populate only for output datasets (not collections)
             param_dict[ out_name ] = NoneDataset( datatypes_registry=self.app.datatypes_registry, ext=ext )
コード例 #3
0
ファイル: evaluation.py プロジェクト: dlal-group/galaxy
    def __populate_output_dataset_wrappers(self, param_dict, output_datasets, job_working_directory):
        for name, hda in output_datasets.items():
            # Write outputs to the working directory (for security purposes)
            # if desired.
            param_dict[name] = DatasetFilenameWrapper(hda, compute_environment=self.compute_environment, io_type="output")
            output_path = str(param_dict[name])
            # Conditionally create empty output:
            # - may already exist (e.g. symlink output)
            # - parent directory might not exist (e.g. Pulsar)
            if not os.path.exists(output_path) and os.path.exists(os.path.dirname(output_path)):
                open(output_path, 'w').close()

            # Provide access to a path to store additional files
            # TODO: move compute path logic into compute environment, move setting files_path
            # logic into DatasetFilenameWrapper. Currently this sits in the middle and glues
            # stuff together inconsistently with the way the rest of path rewriting works.
            file_name = hda.dataset.extra_files_path_name
            param_dict[name].files_path = os.path.abspath(os.path.join(job_working_directory, "working", file_name))
        for out_name, output in self.tool.outputs.items():
            if out_name not in param_dict and output.filters:
                # Assume the reason we lack this output is because a filter
                # failed to pass; for tool writing convienence, provide a
                # NoneDataset
                ext = getattr(output, "format", None)  # populate only for output datasets (not collections)
                param_dict[out_name] = NoneDataset(datatypes_registry=self.app.datatypes_registry, ext=ext)
コード例 #4
0
ファイル: test_wrappers.py プロジェクト: mvdbeek/galaxy
def test_dataset_false_extra_files_path():
    dataset = cast(DatasetInstance, MockDataset())

    wrapper = DatasetFilenameWrapper(dataset)
    assert wrapper.extra_files_path == MOCK_DATASET_EXTRA_FILES_PATH

    new_path = "/new/path/dataset_123.dat"
    dataset_path = DatasetPath(123, MOCK_DATASET_PATH, false_path=new_path)
    wrapper = DatasetFilenameWrapper(dataset, compute_environment=cast(ComputeEnvironment, MockComputeEnvironment(dataset_path)))
    # Setting false_path is not enough to override
    assert wrapper.extra_files_path == MOCK_DATASET_EXTRA_FILES_PATH

    new_files_path = "/new/path/dataset_123_files"
    wrapper = DatasetFilenameWrapper(dataset, compute_environment=cast(ComputeEnvironment, MockComputeEnvironment(false_path=new_path, false_extra_files_path=new_files_path)))
    assert wrapper.extra_files_path == new_files_path
コード例 #5
0
def test_dataset_wrapper_false_path():
    dataset = MockDataset()
    new_path = "/new/path/dataset_123.dat"
    wrapper = DatasetFilenameWrapper(dataset,
                                     dataset_path=Bunch(false_path=new_path))
    assert str(wrapper) == new_path
    assert wrapper.file_name == new_path
コード例 #6
0
def test_dataset_wrapper():
    dataset = MockDataset()
    wrapper = DatasetFilenameWrapper(dataset)
    assert str(wrapper) == MOCK_DATASET_PATH
    assert wrapper.file_name == MOCK_DATASET_PATH

    assert wrapper.ext == MOCK_DATASET_EXT
コード例 #7
0
def test_dataset_false_extra_files_path():
    dataset = MockDataset()

    wrapper = DatasetFilenameWrapper(dataset)
    assert wrapper.extra_files_path == MOCK_DATASET_EXTRA_FILES_PATH

    new_path = "/new/path/dataset_123.dat"
    dataset_path = DatasetPath(123, MOCK_DATASET_PATH, false_path=new_path)
    wrapper = DatasetFilenameWrapper(dataset, dataset_path=dataset_path)
    # Setting false_path is not enough to override
    assert wrapper.extra_files_path == MOCK_DATASET_EXTRA_FILES_PATH

    new_files_path = "/new/path/dataset_123_files"
    dataset_path = DatasetPath(123, MOCK_DATASET_PATH, false_path=new_path, false_extra_files_path=new_files_path)
    wrapper = DatasetFilenameWrapper(dataset, dataset_path=dataset_path)
    assert wrapper.extra_files_path == new_files_path
コード例 #8
0
ファイル: evaluation.py プロジェクト: dlal-group/galaxy
    def __populate_input_dataset_wrappers(self, param_dict, input_datasets):
        # TODO: Update this method for dataset collections? Need to test. -John.

        # FIXME: when self.check_values==True, input datasets are being wrapped
        #        twice (above and below, creating 2 separate
        #        DatasetFilenameWrapper objects - first is overwritten by
        #        second), is this necessary? - if we get rid of this way to
        #        access children, can we stop this redundancy, or is there
        #        another reason for this?
        # - Only necessary when self.check_values is False (==external dataset
        #   tool?: can this be abstracted out as part of being a datasouce tool?)
        # For now we try to not wrap unnecessarily, but this should be untangled at some point.
        for name, data in input_datasets.items():
            param_dict_value = param_dict.get(name, None)
            if data and param_dict_value is None:
                # We may have a nested parameter that is not fully prefixed.
                # We try recovering from param_dict, but tool authors should really use fully-qualified
                # variables
                wrappers = find_instance_nested(param_dict,
                                                instances=(DatasetFilenameWrapper, DatasetListWrapper),
                                                match_key=name)
                if len(wrappers) == 1:
                    wrapper = wrappers[0]
                    param_dict[name] = wrapper
                    continue
            if not isinstance(param_dict_value, (DatasetFilenameWrapper, DatasetListWrapper)):
                wrapper_kwds = dict(
                    datatypes_registry=self.app.datatypes_registry,
                    tool=self,
                    name=name,
                    compute_environment=self.compute_environment,
                )
                param_dict[name] = DatasetFilenameWrapper(data, **wrapper_kwds)
コード例 #9
0
ファイル: wrapped.py プロジェクト: avengerpb/Galaxyondocker
    def wrap_values(self, inputs, input_values, skip_missing_values=False):
        trans = self.trans
        tool = self.tool
        incoming = self.incoming

        # Wrap tool inputs as necessary
        for input in inputs.itervalues():
            if input.name not in input_values and skip_missing_values:
                continue
            value = input_values[input.name]
            if isinstance(input, Repeat):
                for d in input_values[input.name]:
                    self.wrap_values(input.inputs,
                                     d,
                                     skip_missing_values=skip_missing_values)
            elif isinstance(input, Conditional):
                values = input_values[input.name]
                current = values["__current_case__"]
                self.wrap_values(input.cases[current].inputs,
                                 values,
                                 skip_missing_values=skip_missing_values)
            elif isinstance(input, Section):
                values = input_values[input.name]
                self.wrap_values(input.inputs,
                                 values,
                                 skip_missing_values=skip_missing_values)
            elif isinstance(input, DataToolParameter) and input.multiple:
                value = input_values[input.name]
                dataset_instances = DatasetListWrapper.to_dataset_instances(
                    value)
                input_values[ input.name ] = \
                    DatasetListWrapper( None,
                                        dataset_instances,
                                        datatypes_registry=trans.app.datatypes_registry,
                                        tool=tool,
                                        name=input.name )
            elif isinstance(input, DataToolParameter):
                input_values[ input.name ] = \
                    DatasetFilenameWrapper( input_values[ input.name ],
                                            datatypes_registry=trans.app.datatypes_registry,
                                            tool=tool,
                                            name=input.name )
            elif isinstance(input, SelectToolParameter):
                input_values[input.name] = SelectToolParameterWrapper(
                    input,
                    input_values[input.name],
                    tool.app,
                    other_values=incoming)
            elif isinstance(input, DataCollectionToolParameter):
                input_values[input.name] = DatasetCollectionWrapper(
                    None,
                    input_values[input.name],
                    datatypes_registry=trans.app.datatypes_registry,
                    tool=tool,
                    name=input.name,
                )
            else:
                input_values[input.name] = InputValueWrapper(
                    input, value, incoming)
コード例 #10
0
ファイル: test_wrappers.py プロジェクト: msauria/galaxy
def test_dataset_wrapper_false_path():
    dataset = MockDataset()
    new_path = "/new/path/dataset_123.dat"
    wrapper = DatasetFilenameWrapper(
        dataset,
        compute_environment=MockComputeEnvironment(false_path=new_path))
    assert str(wrapper) == new_path
    assert wrapper.file_name == new_path
コード例 #11
0
    def wrap_values(self, inputs, input_values, skip_missing_values=False):
        trans = self.trans
        tool = self.tool
        incoming = self.incoming

        element_identifier_mapper = ElementIdentifierMapper(self._input_datasets)

        # Wrap tool inputs as necessary
        for input in inputs.values():
            if input.name not in input_values and skip_missing_values:
                continue
            value = input_values[input.name]
            copy_identifiers(destination=value, source=input_values)
            if isinstance(input, Repeat):
                for d in value:
                    copy_identifiers(destination=d, source=value)
                    self.wrap_values(input.inputs, d, skip_missing_values=skip_missing_values)
            elif isinstance(input, Conditional):
                values = value
                current = values["__current_case__"]
                self.wrap_values(input.cases[current].inputs, values, skip_missing_values=skip_missing_values)
            elif isinstance(input, Section):
                values = value
                self.wrap_values(input.inputs, values, skip_missing_values=skip_missing_values)
            elif isinstance(input, DataToolParameter) and input.multiple:
                dataset_instances = DatasetListWrapper.to_dataset_instances(value)
                input_values[input.name] = \
                    DatasetListWrapper(None,
                                       dataset_instances,
                                       datatypes_registry=trans.app.datatypes_registry,
                                       tool=tool,
                                       name=input.name,
                                       formats=input.formats)
            elif isinstance(input, DataToolParameter):
                wrapper_kwds = dict(
                    datatypes_registry=trans.app.datatypes_registry,
                    tool=tool,
                    name=input.name,
                    formats=input.formats
                )
                element_identifier = element_identifier_mapper.identifier(value, input_values)
                if element_identifier:
                    wrapper_kwds["identifier"] = element_identifier

                input_values[input.name] = DatasetFilenameWrapper(value, **wrapper_kwds)
            elif isinstance(input, SelectToolParameter):
                input_values[input.name] = SelectToolParameterWrapper(input, value, other_values=incoming)
            elif isinstance(input, DataCollectionToolParameter):
                input_values[input.name] = DatasetCollectionWrapper(
                    None,
                    value,
                    datatypes_registry=trans.app.datatypes_registry,
                    tool=tool,
                    name=input.name,
                )
            else:
                input_values[input.name] = InputValueWrapper(input, value, incoming)
コード例 #12
0
ファイル: evaluation.py プロジェクト: Galaxyinternship/Galaxy
    def __populate_input_dataset_wrappers(self, param_dict, input_datasets,
                                          input_dataset_paths):
        # TODO: Update this method for dataset collections? Need to test. -John.

        # FIXME: when self.check_values==True, input datasets are being wrapped
        #        twice (above and below, creating 2 separate
        #        DatasetFilenameWrapper objects - first is overwritten by
        #        second), is this necessary? - if we get rid of this way to
        #        access children, can we stop this redundancy, or is there
        #        another reason for this?
        # - Only necessary when self.check_values is False (==external dataset
        #   tool?: can this be abstracted out as part of being a datasouce tool?)
        # - But we still want (ALWAYS) to wrap input datasets (this should be
        #   checked to prevent overhead of creating a new object?)
        # Additionally, datasets go in the param dict. We wrap them such that
        # if the bare variable name is used it returns the filename (for
        # backwards compatibility). We also add any child datasets to the
        # the param dict encoded as:
        #   "_CHILD___{dataset_name}___{child_designation}",
        # but this should be considered DEPRECATED, instead use:
        #   $dataset.get_child( 'name' ).filename
        for name, data in input_datasets.items():
            param_dict_value = param_dict.get(name, None)
            if not isinstance(param_dict_value,
                              (DatasetFilenameWrapper, DatasetListWrapper)):
                wrapper_kwds = dict(
                    datatypes_registry=self.app.datatypes_registry,
                    tool=self,
                    name=name,
                )
                if data:
                    real_path = data.file_name
                    if real_path in input_dataset_paths:
                        dataset_path = input_dataset_paths[real_path]
                        wrapper_kwds['dataset_path'] = dataset_path
                param_dict[name] = DatasetFilenameWrapper(data, **wrapper_kwds)
            if data:
                for child in data.children:
                    param_dict["_CHILD___%s___%s" %
                               (name, child.designation
                                )] = DatasetFilenameWrapper(child)
コード例 #13
0
 def __populate_output_dataset_wrappers(self, param_dict, output_datasets,
                                        output_paths,
                                        job_working_directory):
     output_dataset_paths = dataset_path_rewrites(output_paths)
     for name, hda in output_datasets.items():
         # Write outputs to the working directory (for security purposes)
         # if desired.
         real_path = hda.file_name
         if real_path in output_dataset_paths:
             dataset_path = output_dataset_paths[real_path]
             param_dict[name] = DatasetFilenameWrapper(
                 hda, dataset_path=dataset_path)
             try:
                 open(dataset_path.false_path, 'w').close()
             except EnvironmentError:
                 pass  # May well not exist - e.g. LWR.
         else:
             param_dict[name] = DatasetFilenameWrapper(hda)
         # Provide access to a path to store additional files
         # TODO: path munging for cluster/dataset server relocatability
         param_dict[name].files_path = os.path.abspath(
             os.path.join(job_working_directory,
                          "dataset_%s_files" % (hda.dataset.id)))
         for child in hda.children:
             param_dict["_CHILD___%s___%s" %
                        (name,
                         child.designation)] = DatasetFilenameWrapper(child)
     for out_name, output in self.tool.outputs.iteritems():
         if out_name not in param_dict and output.filters:
             # Assume the reason we lack this output is because a filter
             # failed to pass; for tool writing convienence, provide a
             # NoneDataset
             param_dict[out_name] = NoneDataset(
                 datatypes_registry=self.app.datatypes_registry,
                 ext=output.format)
コード例 #14
0
        def wrap_input(input_values, input):
            value = input_values[input.name]
            if isinstance(input, DataToolParameter) and input.multiple:
                dataset_instances = DatasetListWrapper.to_dataset_instances(value)
                input_values[input.name] = \
                    DatasetListWrapper(job_working_directory,
                                       dataset_instances,
                                       compute_environment=self.compute_environment,
                                       datatypes_registry=self.app.datatypes_registry,
                                       tool=self.tool,
                                       name=input.name,
                                       formats=input.formats)

            elif isinstance(input, DataToolParameter):
                dataset = input_values[input.name]
                wrapper_kwds = dict(
                    datatypes_registry=self.app.datatypes_registry,
                    tool=self,
                    name=input.name,
                    compute_environment=self.compute_environment
                )
                element_identifier = element_identifier_mapper.identifier(dataset, param_dict)
                if element_identifier:
                    wrapper_kwds["identifier"] = element_identifier
                input_values[input.name] = \
                    DatasetFilenameWrapper(dataset, **wrapper_kwds)
            elif isinstance(input, DataCollectionToolParameter):
                dataset_collection = value
                wrapper_kwds = dict(
                    datatypes_registry=self.app.datatypes_registry,
                    compute_environment=self.compute_environment,
                    tool=self,
                    name=input.name
                )
                wrapper = DatasetCollectionWrapper(
                    job_working_directory,
                    dataset_collection,
                    **wrapper_kwds
                )
                input_values[input.name] = wrapper
            elif isinstance(input, SelectToolParameter):
                if input.multiple:
                    value = listify(value)
                input_values[input.name] = SelectToolParameterWrapper(
                    input, value, other_values=param_dict, compute_environment=self.compute_environment)
            else:
                input_values[input.name] = InputValueWrapper(
                    input, value, param_dict)
コード例 #15
0
ファイル: evaluation.py プロジェクト: dlal-group/galaxy
        def wrap_input(input_values, input):
            value = input_values[input.name]
            if isinstance(input, DataToolParameter) and input.multiple:
                dataset_instances = DatasetListWrapper.to_dataset_instances(value)
                input_values[input.name] = \
                    DatasetListWrapper(job_working_directory,
                                       dataset_instances,
                                       compute_environment=self.compute_environment,
                                       datatypes_registry=self.app.datatypes_registry,
                                       tool=self.tool,
                                       name=input.name,
                                       formats=input.formats)

            elif isinstance(input, DataToolParameter):
                # FIXME: We're populating param_dict with conversions when
                #        wrapping values, this should happen as a separate
                #        step before wrapping (or call this wrapping step
                #        something more generic) (but iterating this same
                #        list twice would be wasteful)
                # Add explicit conversions by name to current parent
                for conversion_name, conversion_extensions, conversion_datatypes in input.conversions:
                    # If we are at building cmdline step, then converters
                    # have already executed
                    direct_match, conv_ext, converted_dataset = input_values[input.name].find_conversion_destination(conversion_datatypes)
                    # When dealing with optional inputs, we'll provide a
                    # valid extension to be used for None converted dataset
                    if not direct_match and not conv_ext:
                        conv_ext = conversion_extensions[0]
                    # input_values[ input.name ] is None when optional
                    # dataset, 'conversion' of optional dataset should
                    # create wrapper around NoneDataset for converter output
                    if input_values[input.name] and not converted_dataset:
                        # Input that converter is based from has a value,
                        # but converted dataset does not exist
                        raise Exception('A path for explicit datatype conversion has not been found: %s --/--> %s'
                                        % (input_values[input.name].extension, conversion_extensions))
                    else:
                        # Trick wrapper into using target conv ext (when
                        # None) without actually being a tool parameter
                        input_values[conversion_name] = \
                            DatasetFilenameWrapper(converted_dataset,
                                                   datatypes_registry=self.app.datatypes_registry,
                                                   tool=Bunch(conversion_name=Bunch(extensions=conv_ext)),
                                                   name=conversion_name)
                # Wrap actual input dataset
                dataset = input_values[input.name]
                wrapper_kwds = dict(
                    datatypes_registry=self.app.datatypes_registry,
                    tool=self,
                    name=input.name,
                    compute_environment=self.compute_environment
                )
                element_identifier = element_identifier_mapper.identifier(dataset, param_dict)
                if element_identifier:
                    wrapper_kwds["identifier"] = element_identifier
                input_values[input.name] = \
                    DatasetFilenameWrapper(dataset, **wrapper_kwds)
            elif isinstance(input, DataCollectionToolParameter):
                dataset_collection = value
                wrapper_kwds = dict(
                    datatypes_registry=self.app.datatypes_registry,
                    compute_environment=self.compute_environment,
                    tool=self,
                    name=input.name
                )
                wrapper = DatasetCollectionWrapper(
                    job_working_directory,
                    dataset_collection,
                    **wrapper_kwds
                )
                input_values[input.name] = wrapper
            elif isinstance(input, SelectToolParameter):
                if input.multiple:
                    value = listify(value)
                input_values[input.name] = SelectToolParameterWrapper(
                    input, value, other_values=param_dict, compute_environment=self.compute_environment)
            else:
                input_values[input.name] = InputValueWrapper(
                    input, value, param_dict)
コード例 #16
0
 def wrap_input(input_values, input):
     if isinstance(input, DataToolParameter) and input.multiple:
         dataset_instances = input_values[input.name]
         if isinstance(dataset_instances,
                       model.HistoryDatasetCollectionAssociation):
             dataset_instances = dataset_instances.collection.dataset_instances[:]
         input_values[ input.name ] = \
             DatasetListWrapper( dataset_instances,
                                 dataset_paths=input_dataset_paths,
                                 datatypes_registry=self.app.datatypes_registry,
                                 tool=self.tool,
                                 name=input.name )
     elif isinstance(input, DataToolParameter):
         ## FIXME: We're populating param_dict with conversions when
         ##        wrapping values, this should happen as a separate
         ##        step before wrapping (or call this wrapping step
         ##        something more generic) (but iterating this same
         ##        list twice would be wasteful)
         # Add explicit conversions by name to current parent
         for conversion_name, conversion_extensions, conversion_datatypes in input.conversions:
             # If we are at building cmdline step, then converters
             # have already executed
             conv_ext, converted_dataset = input_values[
                 input.name].find_conversion_destination(
                     conversion_datatypes)
             # When dealing with optional inputs, we'll provide a
             # valid extension to be used for None converted dataset
             if not conv_ext:
                 conv_ext = conversion_extensions[0]
             # input_values[ input.name ] is None when optional
             # dataset, 'conversion' of optional dataset should
             # create wrapper around NoneDataset for converter output
             if input_values[input.name] and not converted_dataset:
                 # Input that converter is based from has a value,
                 # but converted dataset does not exist
                 raise Exception(
                     'A path for explicit datatype conversion has not been found: %s --/--> %s'
                     % (input_values[input.name].extension,
                        conversion_extensions))
             else:
                 # Trick wrapper into using target conv ext (when
                 # None) without actually being a tool parameter
                 input_values[ conversion_name ] = \
                     DatasetFilenameWrapper( converted_dataset,
                                             datatypes_registry=self.app.datatypes_registry,
                                             tool=Bunch( conversion_name=Bunch( extensions=conv_ext ) ),
                                             name=conversion_name )
         # Wrap actual input dataset
         dataset = input_values[input.name]
         wrapper_kwds = dict(
             datatypes_registry=self.app.datatypes_registry,
             tool=self,
             name=input.name)
         if dataset:
             #A None dataset does not have a filename
             real_path = dataset.file_name
             if real_path in input_dataset_paths:
                 wrapper_kwds["dataset_path"] = input_dataset_paths[
                     real_path]
         input_values[ input.name ] = \
             DatasetFilenameWrapper( dataset, **wrapper_kwds )
     elif isinstance(input, DataCollectionToolParameter):
         dataset_collection = input_values[input.name]
         wrapper_kwds = dict(
             datatypes_registry=self.app.datatypes_registry,
             dataset_paths=input_dataset_paths,
             tool=self,
             name=input.name)
         wrapper = DatasetCollectionWrapper(dataset_collection,
                                            **wrapper_kwds)
         input_values[input.name] = wrapper
     elif isinstance(input, SelectToolParameter):
         input_values[input.name] = SelectToolParameterWrapper(
             input,
             input_values[input.name],
             self.app,
             other_values=param_dict,
             path_rewriter=self.unstructured_path_rewriter)
     elif isinstance(input, LibraryDatasetToolParameter):
         # TODO: Handle input rewrites in here? How to test LibraryDatasetToolParameters?
         input_values[input.name] = LibraryDatasetValueWrapper(
             input, input_values[input.name], param_dict)
     else:
         input_values[input.name] = InputValueWrapper(
             input, input_values[input.name], param_dict)