def _integrateFullOrbit(vxvv,pot,t,method,dt): """ NAME: _integrateFullOrbit PURPOSE: integrate an orbit in a Phi(R,z,phi) potential INPUT: vxvv - array with the initial conditions stacked like [R,vR,vT,z,vz,phi]; vR outward! pot - Potential instance t - list of times at which to output (0 has to be in this!) method - 'odeint' or 'leapfrog' dt - if set, force the integrator to use this basic stepsize; must be an integer divisor of output stepsize OUTPUT: [:,5] array of [R,vR,vT,z,vz,phi] at each t HISTORY: 2010-08-01 - Written - Bovy (NYU) """ #First check that the potential has C if '_c' in method: if not _check_c(pot): if ('leapfrog' in method or 'symplec' in method): method= 'leapfrog' else: method= 'odeint' warnings.warn("Cannot use C integration because some of the potentials are not implemented in C (using %s instead)" % (method), galpyWarning) if method.lower() == 'leapfrog': #go to the rectangular frame this_vxvv= nu.array([vxvv[0]*nu.cos(vxvv[5]), vxvv[0]*nu.sin(vxvv[5]), vxvv[3], vxvv[1]*nu.cos(vxvv[5])-vxvv[2]*nu.sin(vxvv[5]), vxvv[2]*nu.cos(vxvv[5])+vxvv[1]*nu.sin(vxvv[5]), vxvv[4]]) #integrate out= symplecticode.leapfrog(_rectForce,this_vxvv, t,args=(pot,),rtol=10.**-8) #go back to the cylindrical frame R= nu.sqrt(out[:,0]**2.+out[:,1]**2.) phi= nu.arccos(out[:,0]/R) phi[(out[:,1] < 0.)]= 2.*nu.pi-phi[(out[:,1] < 0.)] vR= out[:,3]*nu.cos(phi)+out[:,4]*nu.sin(phi) vT= out[:,4]*nu.cos(phi)-out[:,3]*nu.sin(phi) out[:,3]= out[:,2] out[:,4]= out[:,5] out[:,0]= R out[:,1]= vR out[:,2]= vT out[:,5]= phi elif ext_loaded and \ (method.lower() == 'leapfrog_c' or method.lower() == 'rk4_c' \ or method.lower() == 'rk6_c' or method.lower() == 'symplec4_c' \ or method.lower() == 'symplec6_c' or method.lower() == 'dopr54_c'): warnings.warn("Using C implementation to integrate orbits", galpyWarningVerbose) #go to the rectangular frame this_vxvv= nu.array([vxvv[0]*nu.cos(vxvv[5]), vxvv[0]*nu.sin(vxvv[5]), vxvv[3], vxvv[1]*nu.cos(vxvv[5])-vxvv[2]*nu.sin(vxvv[5]), vxvv[2]*nu.cos(vxvv[5])+vxvv[1]*nu.sin(vxvv[5]), vxvv[4]]) #integrate tmp_out, msg= integrateFullOrbit_c(pot,this_vxvv, t,method,dt=dt) #go back to the cylindrical frame R= nu.sqrt(tmp_out[:,0]**2.+tmp_out[:,1]**2.) phi= nu.arccos(tmp_out[:,0]/R) phi[(tmp_out[:,1] < 0.)]= 2.*nu.pi-phi[(tmp_out[:,1] < 0.)] vR= tmp_out[:,3]*nu.cos(phi)+tmp_out[:,4]*nu.sin(phi) vT= tmp_out[:,4]*nu.cos(phi)-tmp_out[:,3]*nu.sin(phi) out= nu.zeros((len(t),6)) out[:,0]= R out[:,1]= vR out[:,2]= vT out[:,5]= phi out[:,3]= tmp_out[:,2] out[:,4]= tmp_out[:,5] elif method.lower() == 'odeint' or not ext_loaded: vphi= vxvv[2]/vxvv[0] init= [vxvv[0],vxvv[1],vxvv[5],vphi,vxvv[3],vxvv[4]] intOut= integrate.odeint(_FullEOM,init,t,args=(pot,), rtol=10.**-8.)#,mxstep=100000000) out= nu.zeros((len(t),6)) out[:,0]= intOut[:,0] out[:,1]= intOut[:,1] out[:,2]= out[:,0]*intOut[:,3] out[:,3]= intOut[:,4] out[:,4]= intOut[:,5] out[:,5]= intOut[:,2] #post-process to remove negative radii neg_radii= (out[:,0] < 0.) out[neg_radii,0]= -out[neg_radii,0] out[neg_radii,5]+= m.pi return out
def _integrateFullOrbit(vxvv,pot,t,method): """ NAME: _integrateFullOrbit PURPOSE: integrate an orbit in a Phi(R,z,phi) potential INPUT: vxvv - array with the initial conditions stacked like [R,vR,vT,z,vz,phi]; vR outward! pot - Potential instance t - list of times at which to output (0 has to be in this!) method - 'odeint' or 'leapfrog' OUTPUT: [:,5] array of [R,vR,vT,z,vz,phi] at each t HISTORY: 2010-08-01 - Written - Bovy (NYU) """ #First check that the potential has C if '_c' in method: if isinstance(pot,list): allHasC= nu.prod([p.hasC for p in pot]) else: allHasC= pot.hasC if not allHasC and ('leapfrog' in method or 'symplec' in method): method= 'leapfrog' elif not allHasC: method= 'odeint' if method.lower() == 'leapfrog': #go to the rectangular frame this_vxvv= nu.array([vxvv[0]*nu.cos(vxvv[5]), vxvv[0]*nu.sin(vxvv[5]), vxvv[3], vxvv[1]*nu.cos(vxvv[5])-vxvv[2]*nu.sin(vxvv[5]), vxvv[2]*nu.cos(vxvv[5])+vxvv[1]*nu.sin(vxvv[5]), vxvv[4]]) #integrate out= symplecticode.leapfrog(_rectForce,this_vxvv, t,args=(pot,),rtol=10.**-8) #go back to the cylindrical frame R= nu.sqrt(out[:,0]**2.+out[:,1]**2.) phi= nu.arccos(out[:,0]/R) phi[(out[:,1] < 0.)]= 2.*nu.pi-phi[(out[:,1] < 0.)] vR= out[:,3]*nu.cos(phi)+out[:,4]*nu.sin(phi) vT= out[:,4]*nu.cos(phi)-out[:,3]*nu.sin(phi) out[:,3]= out[:,2] out[:,4]= out[:,5] out[:,0]= R out[:,1]= vR out[:,2]= vT out[:,5]= phi elif ext_loaded and \ (method.lower() == 'leapfrog_c' or method.lower() == 'rk4_c' \ or method.lower() == 'rk6_c' or method.lower() == 'symplec4_c' \ or method.lower() == 'symplec6_c' or method.lower() == 'dopr54_c'): warnings.warn("Using C implementation to integrate orbits", galpyWarning) #go to the rectangular frame this_vxvv= nu.array([vxvv[0]*nu.cos(vxvv[5]), vxvv[0]*nu.sin(vxvv[5]), vxvv[3], vxvv[1]*nu.cos(vxvv[5])-vxvv[2]*nu.sin(vxvv[5]), vxvv[2]*nu.cos(vxvv[5])+vxvv[1]*nu.sin(vxvv[5]), vxvv[4]]) #integrate tmp_out, msg= integrateFullOrbit_c(pot,this_vxvv, t,method) #go back to the cylindrical frame R= nu.sqrt(tmp_out[:,0]**2.+tmp_out[:,1]**2.) phi= nu.arccos(tmp_out[:,0]/R) phi[(tmp_out[:,1] < 0.)]= 2.*nu.pi-phi[(tmp_out[:,1] < 0.)] vR= tmp_out[:,3]*nu.cos(phi)+tmp_out[:,4]*nu.sin(phi) vT= tmp_out[:,4]*nu.cos(phi)-tmp_out[:,3]*nu.sin(phi) out= nu.zeros((len(t),6)) out[:,0]= R out[:,1]= vR out[:,2]= vT out[:,5]= phi out[:,3]= tmp_out[:,2] out[:,4]= tmp_out[:,5] elif method.lower() == 'odeint' or not ext_loaded: vphi= vxvv[2]/vxvv[0] init= [vxvv[0],vxvv[1],vxvv[5],vphi,vxvv[3],vxvv[4]] intOut= integrate.odeint(_FullEOM,init,t,args=(pot,), rtol=10.**-8.)#,mxstep=100000000) out= nu.zeros((len(t),6)) out[:,0]= intOut[:,0] out[:,1]= intOut[:,1] out[:,2]= out[:,0]*intOut[:,3] out[:,3]= intOut[:,4] out[:,4]= intOut[:,5] out[:,5]= intOut[:,2] #post-process to remove negative radii neg_radii= (out[:,0] < 0.) out[neg_radii,0]= -out[neg_radii,0] out[neg_radii,5]+= m.pi return out
def _integrateFullOrbit(vxvv, pot, t, method): """ NAME: _integrateFullOrbit PURPOSE: integrate an orbit in a Phi(R,z,phi) potential INPUT: vxvv - array with the initial conditions stacked like [R,vR,vT,z,vz,phi]; vR outward! pot - Potential instance t - list of times at which to output (0 has to be in this!) method - 'odeint' or 'leapfrog' OUTPUT: [:,5] array of [R,vR,vT,z,vz,phi] at each t HISTORY: 2010-08-01 - Written - Bovy (NYU) """ if method.lower() == 'leapfrog': #go to the rectangular frame this_vxvv = nu.array([ vxvv[0] * nu.cos(vxvv[5]), vxvv[0] * nu.sin(vxvv[5]), vxvv[3], vxvv[1] * nu.cos(vxvv[5]) - vxvv[2] * nu.sin(vxvv[5]), vxvv[2] * nu.cos(vxvv[5]) + vxvv[1] * nu.sin(vxvv[5]), vxvv[4] ]) #integrate out = symplecticode.leapfrog(_rectForce, this_vxvv, t, args=(pot, ), rtol=10.**-8) #go back to the cylindrical frame R = nu.sqrt(out[:, 0]**2. + out[:, 1]**2.) phi = nu.arccos(out[:, 0] / R) phi[(out[:, 1] < 0.)] = 2. * nu.pi - phi[(out[:, 1] < 0.)] vR = out[:, 3] * nu.cos(phi) + out[:, 4] * nu.sin(phi) vT = out[:, 4] * nu.cos(phi) - out[:, 3] * nu.sin(phi) out[:, 3] = out[:, 2] out[:, 4] = out[:, 5] out[:, 0] = R out[:, 1] = vR out[:, 2] = vT out[:, 5] = phi elif method.lower() == 'leapfrog_c' or method.lower() == 'rk4_c' \ or method.lower() == 'rk6_c' or method.lower() == 'symplec4_c' \ or method.lower() == 'symplec6_c' or method.lower() == 'dopr54_c': warnings.warn("Using C implementation to integrate orbits") #go to the rectangular frame this_vxvv = nu.array([ vxvv[0] * nu.cos(vxvv[5]), vxvv[0] * nu.sin(vxvv[5]), vxvv[3], vxvv[1] * nu.cos(vxvv[5]) - vxvv[2] * nu.sin(vxvv[5]), vxvv[2] * nu.cos(vxvv[5]) + vxvv[1] * nu.sin(vxvv[5]), vxvv[4] ]) #integrate tmp_out, msg = integrateFullOrbit_c(pot, this_vxvv, t, method) #go back to the cylindrical frame R = nu.sqrt(tmp_out[:, 0]**2. + tmp_out[:, 1]**2.) phi = nu.arccos(tmp_out[:, 0] / R) phi[(tmp_out[:, 1] < 0.)] = 2. * nu.pi - phi[(tmp_out[:, 1] < 0.)] vR = tmp_out[:, 3] * nu.cos(phi) + tmp_out[:, 4] * nu.sin(phi) vT = tmp_out[:, 4] * nu.cos(phi) - tmp_out[:, 3] * nu.sin(phi) out = nu.zeros((len(t), 6)) out[:, 0] = R out[:, 1] = vR out[:, 2] = vT out[:, 5] = phi out[:, 3] = tmp_out[:, 2] out[:, 4] = tmp_out[:, 5] elif method.lower() == 'odeint': vphi = vxvv[2] / vxvv[0] init = [vxvv[0], vxvv[1], vxvv[5], vphi, vxvv[3], vxvv[4]] intOut = integrate.odeint(_FullEOM, init, t, args=(pot, ), rtol=10.**-8.) #,mxstep=100000000) out = nu.zeros((len(t), 6)) out[:, 0] = intOut[:, 0] out[:, 1] = intOut[:, 1] out[:, 2] = out[:, 0] * intOut[:, 3] out[:, 3] = intOut[:, 4] out[:, 4] = intOut[:, 5] out[:, 5] = intOut[:, 2] #post-process to remove negative radii neg_radii = (out[:, 0] < 0.) out[neg_radii, 0] = -out[neg_radii, 0] out[neg_radii, 5] += m.pi return out