def call_lstm(self, other_args: List[str]): """Process lstm command""" try: ns_parser = pred_helper.parse_args( prog="lstm", description="""Long-Short Term Memory. """, other_args=other_args, ) if ns_parser: neural_networks_view.display_lstm( dataset=self.coin, data=self.data[self.target], n_input_days=ns_parser.n_inputs, n_predict_days=ns_parser.n_days, learning_rate=ns_parser.lr, epochs=ns_parser.n_epochs, batch_size=ns_parser.n_batch_size, test_size=ns_parser.valid_split, n_loops=ns_parser.n_loops, no_shuffle=ns_parser.no_shuffle, time_res=self.resolution, ) except Exception as e: console.print(e, "\n") finally: pred_helper.restore_env()
def call_lstm(self, other_args: List[str]): """Process lstm command""" try: ns_parser = pred_helper.parse_args( prog="lstm", description="""Long-Short Term Memory. """, other_args=other_args, ) if ns_parser: if ns_parser.n_inputs > len(self.data): console.print( f"[red]Data only contains {len(self.data)} samples and the model is trying " f"to use {ns_parser.n_inputs} inputs. Either use less inputs or load with" f" an earlier start date[/red]\n") return neural_networks_view.display_lstm( dataset=self.current_id, data=self.data, n_input_days=ns_parser.n_inputs, n_predict_days=ns_parser.n_days, learning_rate=ns_parser.lr, epochs=ns_parser.n_epochs, batch_size=ns_parser.n_batch_size, test_size=ns_parser.valid_split, n_loops=ns_parser.n_loops, no_shuffle=ns_parser.no_shuffle, time_res=self.resolution, ) except Exception as e: console.print(e, "\n") finally: pred_helper.restore_env()