def simulate_spectrum_dataset(model, random_state=0): energy_edges = np.logspace(-0.5, 1.5, 21) * u.TeV energy_axis = MapAxis.from_edges(energy_edges, interp="log", name="energy") energy_axis_true = energy_axis.copy(name="energy_true") aeff = EffectiveAreaTable2D.from_parametrization( energy_axis_true=energy_axis_true) bkg_model = SkyModel( spectral_model=PowerLawSpectralModel(index=2.5, amplitude="1e-12 cm-2 s-1 TeV-1"), name="background", ) bkg_model.spectral_model.amplitude.frozen = True bkg_model.spectral_model.index.frozen = True geom = RegionGeom.create(region="icrs;circle(0, 0, 0.1)", axes=[energy_axis]) acceptance = RegionNDMap.from_geom(geom=geom, data=1) edisp = EDispKernelMap.from_diagonal_response( energy_axis=energy_axis, energy_axis_true=energy_axis_true, geom=geom, ) geom_true = RegionGeom.create(region="icrs;circle(0, 0, 0.1)", axes=[energy_axis_true]) exposure = make_map_exposure_true_energy(pointing=SkyCoord("0d", "0d"), aeff=aeff, livetime=100 * u.h, geom=geom_true) mask_safe = RegionNDMap.from_geom(geom=geom, dtype=bool) mask_safe.data += True acceptance_off = RegionNDMap.from_geom(geom=geom, data=5) dataset = SpectrumDatasetOnOff( name="test_onoff", exposure=exposure, acceptance=acceptance, acceptance_off=acceptance_off, edisp=edisp, mask_safe=mask_safe, ) dataset.models = bkg_model bkg_npred = dataset.npred_signal() dataset.models = model dataset.fake( random_state=random_state, npred_background=bkg_npred, ) return dataset
def simulate_spectrum_dataset(model, random_state=0): energy_edges = np.logspace(-0.5, 1.5, 21) * u.TeV energy_axis = MapAxis.from_edges(energy_edges, interp="log", name="energy") aeff = EffectiveAreaTable.from_parametrization(energy=energy_edges).to_region_map() bkg_model = SkyModel( spectral_model=PowerLawSpectralModel( index=2.5, amplitude="1e-12 cm-2 s-1 TeV-1" ), name="background", ) bkg_model.spectral_model.amplitude.frozen = True bkg_model.spectral_model.index.frozen = True geom = RegionGeom(region=None, axes=[energy_axis]) acceptance = RegionNDMap.from_geom(geom=geom, data=1) edisp = EDispKernelMap.from_diagonal_response( energy_axis=energy_axis, energy_axis_true=energy_axis.copy(name="energy_true"), geom=geom, ) livetime = 100 * u.h exposure = aeff * livetime mask_safe = RegionNDMap.from_geom(geom=geom, dtype=bool) mask_safe.data += True dataset = SpectrumDatasetOnOff( name="test_onoff", exposure=exposure, acceptance=acceptance, acceptance_off=5, edisp=edisp, mask_safe=mask_safe ) dataset.models = bkg_model bkg_npred = dataset.npred_signal() dataset.models = model dataset.fake( random_state=random_state, npred_background=bkg_npred, ) return dataset
def test_npred_no_edisp(self): const = 1 * u.Unit("cm-2 s-1 TeV-1") model = SkyModel(spectral_model=ConstantSpectralModel(const=const)) livetime = 1 * u.s aeff = RegionNDMap.create( region=self.on_region, unit="cm2", axes=[self.e_reco.copy(name="energy_true")], ) aeff.data += 1 dataset = SpectrumDatasetOnOff( counts=self.on_counts, counts_off=self.off_counts, exposure=aeff * livetime, models=model, ) energy = aeff.geom.axes[0].edges expected = aeff.data[0] * (energy[-1] - energy[0]) * const * livetime assert_allclose(dataset.npred_signal().data.sum(), expected.value)