def to_dict(self): data = super().to_dict() data["name"] = self.name data["type"] = data.pop("type") data["spectral_model"] = self.spectral_model.to_dict() data["parameters"] = Parameters([self.rotation, self.tmax]).to_dict() if self.apply_irf != self._apply_irf_default: data["apply_irf"] = self.apply_irf return data
def parameters(self): return Parameters([self.a, self.y]) + self.m1.parameters
def __init__(self, m1, a=1, y=99): self.m1 = m1 a = Parameter("a", a) y = Parameter("y", y) self.default_parameters = Parameters([a, y]) super().__init__(a=a, y=y)
def parameters(self): return Parameters([self.norm ]) + self.m1.parameters + self.m2.parameters
def parameters(self): return (Parameters([self.rotation, self.tmax]) + self.spectral_model.parameters)
def parameters(self): return (Parameters([self.rotation, self.tmax, self.bias]) + self._intrinsic_spectral_model.parameters + self._ebl.parameters)