コード例 #1
0
def get_subpixels(idx, nside_superpix, nside_subpix, nest=True):
    """Compute the indices of subpixels contained within superpixels.

    This function returns an output array with one additional
    dimension of size N for subpixel indices where N is the maximum
    number of subpixels for any pair of ``nside_superpix`` and
    ``nside_subpix``.  If the number of subpixels is less than N the
    remaining subpixel indices will be set to -1.

    Parameters
    ----------
    idx : `~numpy.ndarray`
        Array of HEALPix pixel indices for superpixels of NSIDE
        ``nside_superpix``.
    nside_superpix : int or `~numpy.ndarray`
        NSIDE of superpixel.
    nside_subpix  : int or `~numpy.ndarray`
        NSIDE of subpixel.
    nest : bool
        If True, assume NESTED pixel ordering, otherwise, RING pixel
        ordering.

    Returns
    -------
    idx_sub : `~numpy.ndarray`
        Indices of HEALpix pixels of nside ``nside_subpix`` contained
        within pixel indices ``idx`` of nside ``nside_superpix``.
    """
    import healpy as hp

    if not nest:
        idx = hp.ring2nest(nside_superpix, idx)

    idx = np.asarray(idx)
    nside_superpix = np.asarray(nside_superpix)
    nside_subpix = np.asarray(nside_subpix)

    if np.any(~is_power2(nside_superpix)) or np.any(~is_power2(nside_subpix)):
        raise ValueError("NSIDE must be a power of 2.")

    # number of subpixels in each superpixel
    npix = np.array((nside_subpix // nside_superpix)**2, ndmin=1)
    x = np.arange(np.max(npix), dtype=int)
    idx = idx * npix

    if not np.all(npix[0] == npix):
        x = np.broadcast_to(x, idx.shape + x.shape)
        idx = idx[..., None] + x
        idx[x >= np.broadcast_to(npix[..., None], x.shape)] = INVALID_INDEX.int
    else:
        idx = idx[..., None] + x

    if not nest:
        m = idx == INVALID_INDEX.int
        idx[m] = 0
        idx = hp.nest2ring(nside_subpix[..., None], idx)
        idx[m] = INVALID_INDEX.int

    return idx
コード例 #2
0
ファイル: geom.py プロジェクト: registerrier/gammapy
    def downsample(self, factor):
        if not is_power2(factor):
            raise ValueError("Downsample factor must be a power of 2.")

        if self.is_allsky:
            return self.__class__(
                self.nside // factor,
                self.nest,
                frame=self.frame,
                region=self.region,
                axes=copy.deepcopy(self.axes),
            )

        idx = list(self.get_idx(flat=True))
        nside = self._get_nside(idx)
        idx_new = get_superpixels(idx[0],
                                  nside,
                                  nside // factor,
                                  nest=self.nest)
        idx[0] = idx_new
        return self.__class__(
            self.nside // factor,
            self.nest,
            frame=self.frame,
            region=tuple(idx),
            axes=copy.deepcopy(self.axes),
        )
コード例 #3
0
ファイル: geom.py プロジェクト: registerrier/gammapy
    def upsample(self, factor):
        if not is_power2(factor):
            raise ValueError("Upsample factor must be a power of 2.")

        if self.is_allsky:
            return self.__class__(
                self.nside * factor,
                self.nest,
                frame=self.frame,
                region=self.region,
                axes=copy.deepcopy(self.axes),
            )

        idx = list(self.get_idx(flat=True))
        nside = self._get_nside(idx)

        idx_new = get_subpixels(idx[0], nside, nside * factor, nest=self.nest)
        for i in range(1, len(idx)):
            idx[i] = idx[i][..., None] * np.ones(idx_new.shape, dtype=int)

        idx[0] = idx_new
        return self.__class__(
            self.nside * factor,
            self.nest,
            frame=self.frame,
            region=tuple(idx),
            axes=copy.deepcopy(self.axes),
        )
コード例 #4
0
def get_superpixels(idx, nside_subpix, nside_superpix, nest=True):
    """Compute the indices of superpixels that contain a subpixel.

    Parameters
    ----------
    idx : `~numpy.ndarray`
        Array of HEALPix pixel indices for subpixels of NSIDE
        ``nside_subpix``.
    nside_subpix  : int or `~numpy.ndarray`
        NSIDE of subpixel.
    nside_superpix : int or `~numpy.ndarray`
        NSIDE of superpixel.
    nest : bool
        If True, assume NESTED pixel ordering, otherwise, RING pixel
        ordering.

    Returns
    -------
    idx_super : `~numpy.ndarray`
        Indices of HEALpix pixels of nside ``nside_superpix`` that
        contain pixel indices ``idx`` of nside ``nside_subpix``.
    """
    import healpy as hp

    idx = np.array(idx)
    nside_superpix = np.asarray(nside_superpix)
    nside_subpix = np.asarray(nside_subpix)

    if not nest:
        idx = hp.ring2nest(nside_subpix, idx)

    if np.any(~is_power2(nside_superpix)) or np.any(~is_power2(nside_subpix)):
        raise ValueError("NSIDE must be a power of 2.")

    ratio = np.array((nside_subpix // nside_superpix)**2, ndmin=1)
    idx //= ratio

    if not nest:
        m = idx == INVALID_INDEX.int
        idx[m] = 0
        idx = hp.nest2ring(nside_superpix, idx)
        idx[m] = INVALID_INDEX.int

    return idx
コード例 #5
0
def nside_to_order(nside):
    """Compute the ORDER given NSIDE.

    Returns -1 for NSIDE values that are not a power of 2.
    """
    nside = np.array(nside, ndmin=1)
    order = -1 * np.ones_like(nside)
    m = is_power2(nside)
    order[m] = np.log2(nside[m]).astype(int)
    return order