コード例 #1
0
    def _train_test_split(self):
        def split(train_rate):
            edges = list(self.graph.edges())
            train_size = int(len(edges) * train_rate)
            random.shuffle(edges)
            train_edges = edges[:train_size]
            test_edges = edges[train_size:]
            return source_targets(train_edges), source_targets(test_edges)
        
        args = self._args
        self._test_nodes = []
        if self._hold_out:
            splits = split(args.tr_rate)
            self._train_sources, self._train_targets = splits[0]
            if args.output_dir != '':
                test_sources, test_targets = splits[1]
                self._test_nodes = set(test_sources) | set(test_targets)
                path = os.path.join(args.output_dir, f'test_graph_{int(args.tr_rate * 100)}.txt')
                gap_helper.log(f"Persisting test data to {path} and the number of test points is  {len(test_sources)}")
                nx.write_edgelist(self._creator(list(zip(test_sources, test_targets))), path=path, data=False)
        else:
            gap_helper.log('No test data is persisted')
            self._train_sources, self._train_targets = source_targets(self.graph.edges())

        self._train_nodes = set(self._train_sources) | set(self._train_targets)
コード例 #2
0
def relable_nodes(graph):
    gap_helper.log('Node relabeling ...')
    nodes = sorted(graph.nodes())
    node_ids = range(len(nodes))
    node_id_map = dict(zip(nodes, node_ids))
    id_node_map = dict(zip(node_ids, nodes))
    return nx.relabel_nodes(graph, node_id_map), id_node_map
コード例 #3
0
 def _create_train_dev_indices(self):
     args = self._args
     self._dev_indices = []
     self._train_indices = np.arange(self._train_sources.shape[0])
     if self._use_dev:
         dev_size = int(len(self._train_sources) * args.dev_rate)
         gap_helper.log(f'Number of dev points: {dev_size}')
         self._dev_indices = np.arange(dev_size)
         self._train_indices = np.arange(dev_size, self._train_sources.shape[0])
コード例 #4
0
 def _build_batches(self, idx):
     gap_helper.log('Building in memory batches')
     batches = []
     sources, targets, negatives = self._train_sources[idx], self._train_targets[idx], self._train_negatives[idx]
     size = idx.shape[0]
     for i in range(0, size, self._batch_size):
         batch = self._fetch_current_batch(start=i, size=size, sources=sources, targets=targets, negatives=negatives)
         batches.append(batch)
     return batches
コード例 #5
0
 def __init__(self, args):
     self._args = args
     self.data = Data(args)
     self.loss_fun = gap_model.RankingLoss
     self.model = None
     self.context_embedding = {}
     self.global_embedding = {}
     self.device = torch.device(
         "cuda:0" if torch.cuda.is_available() else "cpu")
     gap_helper.log(f'Running GAP on a {self.device} machine')
コード例 #6
0
    def train(self):
        args = self._args
        self.model = gap_model.GAP(num_nodes=self.data.num_nodes,
                                   emb_dim=args.dim)
        self.model.to(self.device)
        optimizer = torch.optim.Adam(self.model.parameters(),
                                     lr=args.learning_rate)
        if isinstance(self.data.train_inputs, list):
            """
            In Memory batches
            """
            train_inputs = self.data.train_inputs
            dev_inputs = self.data.dev_inputs
        else:
            """
            We create multiple copies of the training and dev batch iterators.
            Useful when the training input is large, > 100000 edges
            """
            train_inputs = tee(self.data.train_inputs, args.epochs)
            dev_inputs = tee(self.data.dev_inputs, args.epochs)

        for epoch in range(args.epochs):
            train_batches = train_inputs if isinstance(
                train_inputs, list) else train_inputs[epoch]
            for batch in train_batches:
                self._infer(batch)
                criterion = self.loss_fun(self.model)
                optimizer.zero_grad()
                criterion.loss.backward()
                optimizer.step()

            if args.dev_rate > 0:
                val_loss, val_auc = self._validate(dev_inputs if isinstance(
                    dev_inputs, list) else dev_inputs[epoch])
                gap_helper.log(
                    'Epoch: {}/{} training loss: {:.5f} validation loss: {:.5f} validation AUC: {:.5f}'
                    .format(epoch + 1, args.epochs, criterion.loss.data,
                            val_loss, val_auc))
            else:
                gap_helper.log("Epoch {}/{} training loss = {:.5f}".format(
                    epoch + 1, args.epochs, criterion.loss.data))
コード例 #7
0
    def save_embeddings(self):
        args = self._args
        if args.output_dir != '':
            suffix = '' if args.tr_rate == 1 else f'_{str(int(args.tr_rate * 100))}'
            path = os.path.join(args.output_dir, f'gap_context{suffix}.emb')
            gap_helper.log(f'Saving context embedding to {path}')
            with open(path, 'w') as f:
                for node in self.context_embedding:
                    for emb in self.context_embedding[node]:
                        output = '{} {}\n'.format(
                            node, ' '.join(str(val) for val in emb))
                        f.write(output)

            path = os.path.join(args.output_dir, f'gap_global{suffix}.emb')
            gap_helper.log(f'Saving aggregated global embedding to {path}')
            with open(path, 'w') as f:
                for node in self.global_embedding:
                    output = '{} {}\n'.format(
                        node, ' '.join(
                            str(val) for val in self.global_embedding[node]))
                    f.write(output)
コード例 #8
0
    def _negative_sample(self):
        def get_negative_node_to(u, v):
            while True:
                node = self.node_dist_table[random.randint(0, len(self.node_dist_table) - 1)]
                if node != u and node != v:
                    return node

        gap_helper.log('Sampling negative nodes')
        degree = {node: int(1 + self.graph.degree(node) ** 0.75) for node in self.graph.nodes()}
        # node_dist_table is equivalent of the uni-gram distribution table in the word2vec implementation
        self.node_dist_table = [node for node, new_degree in degree.items() for _ in range(new_degree)]

        sources, targets = self._train_sources, self._train_targets
        src, trg, neg = [], [], []

        for i in range(len(sources)):
            neg_node = get_negative_node_to(sources[i], targets[i])
            src.append(sources[i])
            trg.append(targets[i])
            neg.append(neg_node)

        self._train_sources, self._train_targets, self._train_negatives = np.array(src), np.array(trg), np.array(neg)
コード例 #9
0
 def _read_graph(self):
     args = self._args
     self._reader = nx.read_adjlist if args.fmt == 'adjlist' else nx.read_edgelist
     self._creator = nx.DiGraph if args.directed else nx.Graph
     gap_helper.log(f'Reading graph from {args.input}')
     self.graph = self._reader(path=args.input, create_using=self._creator, nodetype=int)
     self.graph, self.id_to_node = relable_nodes(self.graph)
     self.num_nodes = self.graph.number_of_nodes()
     gap_helper.log(f'Number of nodes {self.num_nodes}')
     gap_helper.log(f'Number of edges {self.graph.number_of_edges()}')
コード例 #10
0
 def _build_batch_iterator(self, idx):
     gap_helper.log('Building batch iterator')
     sources, targets, negatives = self._train_sources[idx], self._train_targets[idx], self._train_negatives[idx]
     size = idx.shape[0]
     for i in range(0, size, self._batch_size):
         yield self._fetch_current_batch(start=i, size=size, sources=sources, targets=targets, negatives=negatives)