def ppo_garage_tf(ctxt, env_id, seed): """Create garage TensorFlow PPO model and training. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with TFTrainer(ctxt) as trainer: env = normalize(GymEnv(env_id)) policy = TF_GMP( env_spec=env.spec, hidden_sizes=(32, 32), hidden_nonlinearity=tf.nn.tanh, output_nonlinearity=None, ) baseline = TF_GMB( env_spec=env.spec, hidden_sizes=(32, 32), use_trust_region=False, optimizer=FirstOrderOptimizer, optimizer_args=dict( batch_size=32, max_optimization_epochs=10, learning_rate=3e-4, ), ) sampler = RaySampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True) algo = TF_PPO(env_spec=env.spec, policy=policy, baseline=baseline, sampler=sampler, discount=0.99, gae_lambda=0.95, center_adv=True, lr_clip_range=0.2, optimizer_args=dict(batch_size=32, max_optimization_epochs=10, learning_rate=3e-4, verbose=True)) trainer.setup(algo, env) trainer.train(n_epochs=hyper_parameters['n_epochs'], batch_size=hyper_parameters['batch_size'])
def ppo_garage_tf(ctxt, env_id, seed): """Create garage TensorFlow PPO model and training. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by LocalRunner to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with LocalTFRunner(ctxt) as runner: env = TfEnv(normalize(gym.make(env_id))) policy = TF_GMP( env_spec=env.spec, hidden_sizes=(32, 32), hidden_nonlinearity=tf.nn.tanh, output_nonlinearity=None, ) baseline = TF_GMB( env_spec=env.spec, regressor_args=dict( hidden_sizes=(32, 32), use_trust_region=False, optimizer=FirstOrderOptimizer, optimizer_args=dict( batch_size=32, max_epochs=10, tf_optimizer_args=dict(learning_rate=3e-4), ), ), ) algo = TF_PPO(env_spec=env.spec, policy=policy, baseline=baseline, max_path_length=hyper_parameters['max_path_length'], discount=0.99, gae_lambda=0.95, center_adv=True, lr_clip_range=0.2, optimizer_args=dict( batch_size=32, max_epochs=10, tf_optimizer_args=dict(learning_rate=3e-4), verbose=True)) runner.setup(algo, env) runner.train(n_epochs=hyper_parameters['n_epochs'], batch_size=hyper_parameters['batch_size'])
def run_garage_tf(env, seed, log_dir): """Create garage TensorFlow PPO model and training. Args: env (dict): Environment of the task. seed (int): Random positive integer for the trial. log_dir (str): Log dir path. Returns: str: Path to output csv file """ deterministic.set_seed(seed) with LocalTFRunner(snapshot_config) as runner: env = TfEnv(normalize(env)) policy = TF_GMP( env_spec=env.spec, hidden_sizes=(32, 32), hidden_nonlinearity=tf.nn.tanh, output_nonlinearity=None, ) baseline = TF_GMB( env_spec=env.spec, regressor_args=dict( hidden_sizes=(32, 32), use_trust_region=False, optimizer=FirstOrderOptimizer, optimizer_args=dict( batch_size=32, max_epochs=10, tf_optimizer_args=dict(learning_rate=3e-4), ), ), ) algo = TF_PPO(env_spec=env.spec, policy=policy, baseline=baseline, max_path_length=hyper_parameters['max_path_length'], discount=0.99, gae_lambda=0.95, center_adv=True, lr_clip_range=0.2, optimizer_args=dict( batch_size=32, max_epochs=10, tf_optimizer_args=dict(learning_rate=3e-4), verbose=True)) # Set up logger since we are not using run_experiment tabular_log_file = osp.join(log_dir, 'progress.csv') dowel_logger.add_output(dowel.StdOutput()) dowel_logger.add_output(dowel.CsvOutput(tabular_log_file)) dowel_logger.add_output(dowel.TensorBoardOutput(log_dir)) runner.setup(algo, env) runner.train(n_epochs=hyper_parameters['n_epochs'], batch_size=hyper_parameters['batch_size']) dowel_logger.remove_all() return tabular_log_file