コード例 #1
0
def run_task(*_):
    """Run the job."""
    with LocalRunner() as runner:
        env = TfEnv(normalize(gym.make('InvertedPendulum-v2')))

        policy = GaussianMLPPolicy(env_spec=env.spec, hidden_sizes=(32, 32))

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = VPG(
            env_spec=env.spec,
            policy=policy,
            baseline=baseline,
            max_path_length=100,
            discount=0.99,
            max_kl_step=0.01,
        )

        runner.setup(algo,
                     env,
                     sampler_cls=ISSampler,
                     sampler_args=dict(n_backtrack=1))
        runner.train(n_epochs=40, batch_size=4000)
コード例 #2
0
    def test_make_sampler_ray_sampler(self, ray_session_fixture):
        del ray_session_fixture
        assert ray.is_initialized()
        with LocalTFRunner(snapshot_config) as runner:
            env = TfEnv(env_name='CubeCrash-v0')

            policy = CategoricalMLPPolicy(name='policy',
                                          env_spec=env.spec,
                                          hidden_sizes=(8, 8))

            baseline = LinearFeatureBaseline(env_spec=env.spec)

            algo = VPG(env_spec=env.spec,
                       policy=policy,
                       baseline=baseline,
                       max_path_length=100,
                       discount=0.99,
                       optimizer_args=dict(
                           tf_optimizer_args=dict(learning_rate=0.01, )))

            runner.setup(algo, env, sampler_cls=RaySampler)
            assert isinstance(runner._sampler, RaySampler)
            runner.train(n_epochs=1, batch_size=10)
コード例 #3
0
def run_task(snapshot_config, *_):
    """Train CEM with Cartpole-v1 environment."""
    with LocalTFRunner(snapshot_config=snapshot_config) as runner:
        env = TfEnv(env_name='CartPole-v1')

        policy = CategoricalMLPPolicy(name='policy',
                                      env_spec=env.spec,
                                      hidden_sizes=(32, 32))

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        n_samples = 20

        algo = CEM(env_spec=env.spec,
                   policy=policy,
                   baseline=baseline,
                   best_frac=0.05,
                   max_path_length=100,
                   n_samples=n_samples)

        runner.setup(algo, env, sampler_cls=OnPolicyVectorizedSampler)
        # NOTE: make sure that n_epoch_cycles == n_samples !
        runner.train(n_epochs=100, batch_size=1000, n_epoch_cycles=n_samples)
コード例 #4
0
ファイル: ddpg_pendulum.py プロジェクト: ZaneH1992/garage
def run_task(snapshot_config, *_):
    """Run task."""
    with LocalTFRunner(snapshot_config=snapshot_config) as runner:
        env = TfEnv(gym.make('InvertedDoublePendulum-v2'))

        action_noise = OUStrategy(env.spec, sigma=0.2)

        policy = ContinuousMLPPolicyWithModel(env_spec=env.spec,
                                              hidden_sizes=[64, 64],
                                              hidden_nonlinearity=tf.nn.relu,
                                              output_nonlinearity=tf.nn.tanh)

        qf = ContinuousMLPQFunction(env_spec=env.spec,
                                    hidden_sizes=[64, 64],
                                    hidden_nonlinearity=tf.nn.relu)

        replay_buffer = SimpleReplayBuffer(env_spec=env.spec,
                                           size_in_transitions=int(1e6),
                                           time_horizon=100)

        ddpg = DDPG(env_spec=env.spec,
                    policy=policy,
                    policy_lr=1e-4,
                    qf_lr=1e-3,
                    qf=qf,
                    replay_buffer=replay_buffer,
                    target_update_tau=1e-2,
                    n_train_steps=50,
                    discount=0.9,
                    min_buffer_size=int(1e4),
                    exploration_strategy=action_noise,
                    policy_optimizer=tf.train.AdamOptimizer,
                    qf_optimizer=tf.train.AdamOptimizer)

        runner.setup(algo=ddpg, env=env)

        runner.train(n_epochs=500, n_epoch_cycles=20, batch_size=100)
コード例 #5
0
def trpo_garage_pytorch(ctxt, env_id, seed):
    """Create garage PyTorch TRPO model and training.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
                configuration used by LocalRunner to create the
                snapshotter.
        env_id (str): Environment id of the task.
        seed (int): Random positive integer for the trial.

    """
    deterministic.set_seed(seed)

    runner = LocalRunner(ctxt)

    env = TfEnv(normalize(gym.make(env_id)))

    policy = PyTorch_GMP(env.spec,
                         hidden_sizes=hyper_parameters['hidden_sizes'],
                         hidden_nonlinearity=torch.tanh,
                         output_nonlinearity=None)

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    algo = PyTorch_TRPO(env_spec=env.spec,
                        policy=policy,
                        value_function=value_function,
                        max_path_length=hyper_parameters['max_path_length'],
                        discount=hyper_parameters['discount'],
                        gae_lambda=hyper_parameters['gae_lambda'])

    runner.setup(algo, env)
    runner.train(n_epochs=hyper_parameters['n_epochs'],
                 batch_size=hyper_parameters['batch_size'])
コード例 #6
0
ファイル: dqn_cartpole.py プロジェクト: zhangyx96/garage
def run_task(snapshot_config, *_):
    """Run task."""
    with LocalTFRunner(snapshot_config=snapshot_config) as runner:
        n_epochs = 10
        n_epoch_cycles = 10
        sampler_batch_size = 500
        num_timesteps = n_epochs * n_epoch_cycles * sampler_batch_size
        env = TfEnv(gym.make('CartPole-v0'))
        replay_buffer = SimpleReplayBuffer(env_spec=env.spec,
                                           size_in_transitions=int(1e4),
                                           time_horizon=1)
        qf = DiscreteMLPQFunction(env_spec=env.spec, hidden_sizes=(64, 64))
        policy = DiscreteQfDerivedPolicy(env_spec=env.spec, qf=qf)
        epilson_greedy_strategy = EpsilonGreedyStrategy(
            env_spec=env.spec,
            total_timesteps=num_timesteps,
            max_epsilon=1.0,
            min_epsilon=0.02,
            decay_ratio=0.1)
        algo = DQN(env_spec=env.spec,
                   policy=policy,
                   qf=qf,
                   exploration_strategy=epilson_greedy_strategy,
                   replay_buffer=replay_buffer,
                   qf_lr=1e-4,
                   discount=1.0,
                   min_buffer_size=int(1e3),
                   double_q=True,
                   n_train_steps=500,
                   n_epoch_cycles=n_epoch_cycles,
                   target_network_update_freq=1,
                   buffer_batch_size=32)

        runner.setup(algo, env)
        runner.train(n_epochs=n_epochs,
                     n_epoch_cycles=n_epoch_cycles,
                     batch_size=sampler_batch_size)
コード例 #7
0
def run_task(v):
    v = SimpleNamespace(**v)

    # Environment
    env = SimplePusherEnv(action_scale=0.04,
                          control_method="position_control",
                          completion_bonus=0.1,
                          collision_penalty=0.05)

    env = TfEnv(env)

    # Policy
    policy = GaussianMLPPolicy(
        name="policy",
        env_spec=env.spec,
        hidden_sizes=(256, 128),
        init_std=v.policy_init_std,
    )

    baseline = GaussianMLPBaseline(
        env_spec=env.spec,
        regressor_args=dict(hidden_sizes=(256, 128)),
    )

    algo = PPO(
        env=env,
        policy=policy,
        baseline=baseline,
        batch_size=v.batch_size,  # 4096
        max_path_length=v.max_path_length,
        n_itr=2000,
        discount=0.99,
        step_size=0.2,
        optimizer_args=dict(batch_size=32, max_epochs=10),
        plot=True,
    )
    algo.train()
コード例 #8
0
def run_task(snapshot_config, *_):
    """Run task."""
    with LocalTFRunner(snapshot_config=snapshot_config) as runner:
        # env = TfEnv(normalize(MassSpringEnv_OptL_HwAsAction(params), normalize_action=False, normalize_obs=False, normalize_reward=True, reward_alpha=0.1))
        env = TfEnv(MassSpringEnv_OptL_HwAsAction(params))

        zip_project(log_dir=runner._snapshotter._snapshot_dir)

        comp_policy_model = MLPModel(output_dim=1, 
            hidden_sizes=params.comp_policy_network_size, 
            hidden_nonlinearity=None,
            output_nonlinearity=None,
            )

        mech_policy_model = MechPolicyModel_OptL_HwAsAction(params)

        policy = CompMechPolicy_OptL_HwAsAction(name='comp_mech_policy', 
                env_spec=env.spec, 
                comp_policy_model=comp_policy_model, 
                mech_policy_model=mech_policy_model)

        # baseline = GaussianMLPBaseline(
        #     env_spec=env.spec,
        #     regressor_args=dict(
        #         hidden_sizes=params.baseline_network_size,
        #         hidden_nonlinearity=tf.nn.tanh,
        #         use_trust_region=True,
        #     ),
        # )
        
        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = CMAES(env_spec=env.spec, policy=policy, baseline=baseline, **params.cmaes_algo_kwargs)

        runner.setup(algo, env)

        runner.train(**params.cmaes_train_kwargs)
コード例 #9
0
def run_task(vv):

    env = TfEnv(normalize(gym.make('HalfCheetah-v1')))

    policy = GaussianMLPPolicy(env_spec=env.spec,
                               hidden_sizes=(32, 32),
                               name="policy")

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    algo = TRPO(
        env=env,
        policy=policy,
        baseline=baseline,
        batch_size=4000,
        max_path_length=100,
        n_itr=40,
        discount=0.99,
        step_size=vv["step_size"],
        # Uncomment both lines (this and the plot parameter below) to enable
        # plotting
        # plot=True,
    )
    algo.train()
コード例 #10
0
    def test_is_pickleable(self):
        box_env = TfEnv(DummyBoxEnv(obs_dim=(1, )))
        with mock.patch(('garage.tf.baselines.'
                         'gaussian_mlp_baseline_with_model.'
                         'GaussianMLPRegressorWithModel'),
                        new=SimpleGaussianMLPRegressor):
            gmb = GaussianMLPBaselineWithModel(env_spec=box_env.spec)
        obs = {'observations': [np.full(1, 1), np.full(1, 1)]}

        with tf.compat.v1.variable_scope('GaussianMLPBaselineWithModel',
                                         reuse=True):
            return_var = tf.compat.v1.get_variable(
                'SimpleGaussianMLPModel/return_var')
        return_var.load(1.0)

        prediction = gmb.predict(obs)

        h = pickle.dumps(gmb)

        with tf.compat.v1.Session(graph=tf.Graph()):
            gmb_pickled = pickle.loads(h)
            prediction2 = gmb_pickled.predict(obs)

            assert np.array_equal(prediction, prediction2)
コード例 #11
0
def test_obtain_exact_trajectories():
    max_path_length = 15
    n_workers = 8
    env = TfEnv(PointEnv())
    per_worker_actions = [env.action_space.sample() for _ in range(n_workers)]
    policies = [
        FixedPolicy(env.spec, [action] * max_path_length)
        for action in per_worker_actions
    ]
    workers = WorkerFactory(seed=100,
                            max_path_length=max_path_length,
                            n_workers=n_workers)
    sampler = RaySampler.from_worker_factory(workers, policies, envs=env)
    n_traj_per_worker = 3
    rollouts = sampler.obtain_exact_trajectories(n_traj_per_worker, policies)
    # At least one action per trajectory.
    assert sum(rollouts.lengths) >= n_workers * n_traj_per_worker
    # All of the trajectories.
    assert len(rollouts.lengths) == n_workers * n_traj_per_worker
    worker = -1
    for count, rollout in enumerate(rollouts.split()):
        if count % n_traj_per_worker == 0:
            worker += 1
        assert (rollout.actions == per_worker_actions[worker]).all()
コード例 #12
0
def run_task(snapshot_config, *_):
    with LocalRunner(snapshot_config=snapshot_config,
                     max_cpus=n_envs) as runner:
        env = TfEnv(env_name='CartPole-v1')

        policy = CategoricalMLPPolicy(name='policy',
                                      env_spec=env.spec,
                                      hidden_sizes=(32, 32))

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = TRPO(env_spec=env.spec,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=max_path_length,
                    discount=0.99,
                    max_kl_step=0.01)

        runner.setup(algo=algo,
                     env=env,
                     sampler_cls=BatchSampler,
                     sampler_args={'n_envs': n_envs})

        runner.train(n_epochs=100, batch_size=4000, plot=False)
コード例 #13
0
ファイル: vpg_pendulum.py プロジェクト: JoleProject/Jole
def run_task(snapshot_config, *_):
    """Run the job."""
    env = TfEnv(env_name='InvertedDoublePendulum-v2')

    runner = LocalRunner(snapshot_config)

    policy = GaussianMLPPolicy(env.spec,
                               hidden_sizes=[64, 64],
                               hidden_nonlinearity=torch.tanh,
                               output_nonlinearity=None)

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    algo = VPG(env_spec=env.spec,
               policy=policy,
               optimizer=torch.optim.Adam,
               baseline=baseline,
               max_path_length=100,
               discount=0.99,
               center_adv=False,
               policy_lr=1e-2)

    runner.setup(algo, env)
    runner.train(n_epochs=100, batch_size=10000)
コード例 #14
0
    def test_tf_batch_sampler(self):
        max_cpus = 8
        with LocalTFRunner(snapshot_config, max_cpus=max_cpus) as runner:
            env = TfEnv(env_name='CartPole-v1')

            policy = CategoricalMLPPolicy(name='policy',
                                          env_spec=env.spec,
                                          hidden_sizes=(32, 32))

            baseline = LinearFeatureBaseline(env_spec=env.spec)

            algo = VPG(env_spec=env.spec,
                       policy=policy,
                       baseline=baseline,
                       max_path_length=1,
                       discount=0.99)

            runner.setup(algo,
                         env,
                         sampler_cls=BatchSampler,
                         sampler_args={'n_envs': max_cpus})

            try:
                runner.initialize_tf_vars()
            except BaseException:
                raise AssertionError(
                    'LocalRunner should be able to initialize tf variables.')

            runner._start_worker()

            paths = runner._sampler.obtain_samples(0,
                                                   batch_size=8,
                                                   whole_paths=True)
            assert len(paths) >= max_cpus, (
                'BatchSampler should sample more than max_cpus={} '
                'trajectories'.format(max_cpus))
コード例 #15
0
    def test_make_sampler_batch_sampler(self):
        with LocalTFRunner(snapshot_config) as runner:
            env = TfEnv(env_name='CartPole-v1')

            policy = CategoricalMLPPolicy(name='policy',
                                          env_spec=env.spec,
                                          hidden_sizes=(8, 8))

            baseline = LinearFeatureBaseline(env_spec=env.spec)

            algo = VPG(env_spec=env.spec,
                       policy=policy,
                       baseline=baseline,
                       max_path_length=100,
                       discount=0.99,
                       optimizer_args=dict(
                           tf_optimizer_args=dict(learning_rate=0.01, )))

            runner.setup(algo,
                         env,
                         sampler_cls=BatchSampler,
                         sampler_args=dict(n_envs=3))
            assert isinstance(runner._sampler, BatchSampler)
            runner.train(n_epochs=1, batch_size=10)
コード例 #16
0
    def vpg_garage_pytorch(ctxt, env_id, seed):
        """Create garage PyTorch VPG model and training.

        Args:
            ctxt (garage.experiment.ExperimentContext): The experiment
                configuration used by LocalRunner to create the
                snapshotter.
            env_id (str): Environment id of the task.
            seed (int): Random positive integer for the trial.

        """
        deterministic.set_seed(seed)

        runner = LocalRunner(ctxt)

        env = TfEnv(normalize(gym.make(env_id)))

        policy = PyTorch_GMP(env.spec,
                             hidden_sizes=hyper_parameters['hidden_sizes'],
                             hidden_nonlinearity=torch.tanh,
                             output_nonlinearity=None)

        value_function = LinearFeatureBaseline(env_spec=env.spec)

        algo = PyTorch_VPG(env_spec=env.spec,
                           policy=policy,
                           optimizer=torch.optim.Adam,
                           policy_lr=hyper_parameters['learning_rate'],
                           value_function=value_function,
                           max_path_length=hyper_parameters['max_path_length'],
                           discount=hyper_parameters['discount'],
                           center_adv=hyper_parameters['center_adv'])

        runner.setup(algo, env)
        runner.train(n_epochs=hyper_parameters['n_epochs'],
                     batch_size=hyper_parameters['batch_size'])
コード例 #17
0
def trpo_garage_tf(ctxt, env_id, seed):
    """Create garage Tensorflow TROI model and training.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the
            snapshotter.
        env_id (str): Environment id of the task.
        seed (int): Random positive integer for the trial.

    """
    deterministic.set_seed(seed)

    with LocalTFRunner(ctxt) as runner:
        env = TfEnv(normalize(gym.make(env_id)))

        policy = GaussianMLPPolicy(
            env_spec=env.spec,
            hidden_sizes=hyper_parameters['hidden_sizes'],
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
        )

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = TRPO(env_spec=env.spec,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=hyper_parameters['max_path_length'],
                    discount=hyper_parameters['discount'],
                    gae_lambda=hyper_parameters['gae_lambda'],
                    max_kl_step=hyper_parameters['max_kl'])

        runner.setup(algo, env)
        runner.train(n_epochs=hyper_parameters['n_epochs'],
                     batch_size=hyper_parameters['batch_size'])
コード例 #18
0
    def test_obs_is_image(self):
        env = TfEnv(DummyDiscretePixelEnv(), is_image=True)
        with mock.patch(('garage.tf.baselines.'
                         'gaussian_cnn_baseline.'
                         'GaussianCNNRegressor'),
                        new=SimpleGaussianCNNRegressor):
            with mock.patch(
                    'garage.tf.baselines.'
                    'gaussian_cnn_baseline.'
                    'normalize_pixel_batch',
                    side_effect=normalize_pixel_batch) as npb:

                gcb = GaussianCNNBaseline(env_spec=env.spec)

                obs_dim = env.spec.observation_space.shape
                paths = [{
                    'observations': [np.full(obs_dim, 1)],
                    'returns': [1]
                }, {
                    'observations': [np.full(obs_dim, 2)],
                    'returns': [2]
                }]

                gcb.fit(paths)
                observations = np.concatenate(
                    [p['observations'] for p in paths])
                npb.assert_called_once()
                assert (npb.call_args_list[0][0][0] == observations).all()

                obs = {
                    'observations': [np.full(obs_dim, 1),
                                     np.full(obs_dim, 2)]
                }
                observations = obs['observations']
                gcb.predict(obs)
                assert npb.call_args_list[1][0][0] == observations
コード例 #19
0
def run_task(*_):
    """
    Wrap PPO training task in the run_task function.

    :param _:
    :return:
    """
    env = TfEnv(normalize(gym.make("InvertedDoublePendulum-v2")))

    policy = GaussianMLPPolicy(env_spec=env.spec, hidden_sizes=(64, 64))

    baseline = GaussianMLPBaseline(env_spec=env.spec)

    algo = PPO(env=env,
               policy=policy,
               baseline=baseline,
               batch_size=2048,
               max_path_length=100,
               n_itr=488,
               discount=0.99,
               step_size=0.01,
               optimizer_args=dict(batch_size=32, max_epochs=10),
               plot=False)
    algo.train()
コード例 #20
0
    def test_dm_control_tf_policy(self):
        task = ALL_TASKS[0]

        with self.graph.as_default():
            env = TfEnv(DmControlEnv(domain_name=task[0], task_name=task[1]))

            policy = GaussianMLPPolicy(
                env_spec=env.spec,
                hidden_sizes=(32, 32),
            )

            baseline = LinearFeatureBaseline(env_spec=env.spec)

            algo = TRPO(
                env=env,
                policy=policy,
                baseline=baseline,
                batch_size=10,
                max_path_length=5,
                n_itr=1,
                discount=0.99,
                step_size=0.01,
            )
            algo.train()
コード例 #21
0
    def test_is_pickleable(self, batch_size, hidden_sizes):
        """Test if policy is unchanged after pickling."""
        env_spec = TfEnv(DummyBoxEnv())
        obs_dim = env_spec.observation_space.flat_dim
        obs = torch.ones([batch_size, obs_dim], dtype=torch.float32)
        init_std = 2.

        policy = TanhGaussianMLPPolicy(env_spec=env_spec,
                                       hidden_sizes=hidden_sizes,
                                       init_std=init_std,
                                       hidden_nonlinearity=None,
                                       std_parameterization='exp',
                                       hidden_w_init=nn.init.ones_,
                                       output_w_init=nn.init.ones_)

        output1_action, output1_prob = policy.get_actions(obs)

        p = pickle.dumps(policy)
        policy_pickled = pickle.loads(p)
        output2_action, output2_prob = policy_pickled.get_actions(obs)
        assert np.allclose(output2_prob['mean'],
                           output1_prob['mean'],
                           rtol=1e-3)
        assert output1_action.shape == output2_action.shape
コード例 #22
0
def run_task(*_):
    """Train CMA_ES with Cartpole-v1 environment."""
    with LocalRunner() as runner:
        env = TfEnv(env_name='CartPole-v1')

        policy = CategoricalMLPPolicy(name='policy',
                                      env_spec=env.spec,
                                      hidden_sizes=(32, 32))

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        runner.initialize_tf_vars()

        n_samples = 20

        algo = CMAES(env_spec=env.spec,
                     policy=policy,
                     baseline=baseline,
                     max_path_length=100,
                     n_samples=n_samples)

        runner.setup(algo, env, sampler_cls=OnPolicyVectorizedSampler)
        # NOTE: make sure that n_epoch_cycles == n_samples !
        runner.train(n_epochs=100, batch_size=1000, n_epoch_cycles=n_samples)
コード例 #23
0
def run_garage(env, seed, log_dir):
    '''
    Create garage model and training.

    Replace the ddpg with the algorithm you want to run.

    :param env: Environment of the task.
    :param seed: Random seed for the trial.
    :param log_dir: Log dir path.
    :return:
    '''
    deterministic.set_seed(seed)

    with LocalRunner() as runner:
        env = TfEnv(env)
        # Set up params for ddpg
        action_noise = OUStrategy(env.spec, sigma=params['sigma'])

        policy = ContinuousMLPPolicy(
            env_spec=env.spec,
            hidden_sizes=params['policy_hidden_sizes'],
            hidden_nonlinearity=tf.nn.relu,
            output_nonlinearity=tf.nn.tanh)

        qf = ContinuousMLPQFunction(env_spec=env.spec,
                                    hidden_sizes=params['qf_hidden_sizes'],
                                    hidden_nonlinearity=tf.nn.relu)

        replay_buffer = SimpleReplayBuffer(
            env_spec=env.spec,
            size_in_transitions=params['replay_buffer_size'],
            time_horizon=params['n_rollout_steps'])

        ddpg = DDPG(env_spec=env.spec,
                    policy=policy,
                    qf=qf,
                    replay_buffer=replay_buffer,
                    policy_lr=params['policy_lr'],
                    qf_lr=params['qf_lr'],
                    target_update_tau=params['tau'],
                    n_train_steps=params['n_train_steps'],
                    discount=params['discount'],
                    min_buffer_size=int(1e4),
                    exploration_strategy=action_noise,
                    policy_optimizer=tf.train.AdamOptimizer,
                    qf_optimizer=tf.train.AdamOptimizer)

        # Set up logger since we are not using run_experiment
        tabular_log_file = osp.join(log_dir, 'progress.csv')
        tensorboard_log_dir = osp.join(log_dir)
        garage_logger.add_output(StdOutput())
        garage_logger.add_output(CsvOutput(tabular_log_file))
        garage_logger.add_output(TensorBoardOutput(tensorboard_log_dir))

        runner.setup(ddpg, env)
        runner.train(n_epochs=params['n_epochs'],
                     n_epoch_cycles=params['n_epoch_cycles'],
                     batch_size=params['n_rollout_steps'])

        garage_logger.remove_all()

        return tabular_log_file
コード例 #24
0
ファイル: test_benchmark_her.py プロジェクト: wyjw/garage
def run_garage(env, seed, log_dir):
    '''
    Create garage model and training.

    Replace the ppo with the algorithm you want to run.

    :param env: Environment of the task.
    :param seed: Random seed for the trial.
    :param log_dir: Log dir path.
    :return:
    '''
    deterministic.set_seed(seed)
    env.reset()

    with LocalRunner() as runner:
        env = TfEnv(normalize(env))

        action_noise = OUStrategy(env.spec, sigma=params['sigma'])

        policy = ContinuousMLPPolicyWithModel(
            env_spec=env.spec,
            hidden_sizes=params['policy_hidden_sizes'],
            hidden_nonlinearity=tf.nn.relu,
            output_nonlinearity=tf.nn.tanh,
            input_include_goal=True,
        )

        qf = ContinuousMLPQFunction(
            env_spec=env.spec,
            hidden_sizes=params['qf_hidden_sizes'],
            hidden_nonlinearity=tf.nn.relu,
            input_include_goal=True,
        )

        replay_buffer = HerReplayBuffer(
            env_spec=env.spec,
            size_in_transitions=params['replay_buffer_size'],
            time_horizon=params['n_rollout_steps'],
            replay_k=0.4,
            reward_fun=env.compute_reward,
        )

        algo = DDPG(
            env_spec=env.spec,
            policy=policy,
            qf=qf,
            replay_buffer=replay_buffer,
            policy_lr=params['policy_lr'],
            qf_lr=params['qf_lr'],
            target_update_tau=params['tau'],
            n_train_steps=params['n_train_steps'],
            discount=params['discount'],
            exploration_strategy=action_noise,
            policy_optimizer=tf.train.AdamOptimizer,
            qf_optimizer=tf.train.AdamOptimizer,
            buffer_batch_size=256,
            input_include_goal=True,
        )

        # Set up logger since we are not using run_experiment
        tabular_log_file = osp.join(log_dir, 'progress.csv')
        logger.add_output(dowel.StdOutput())
        logger.add_output(dowel.CsvOutput(tabular_log_file))
        logger.add_output(dowel.TensorBoardOutput(log_dir))

        runner.setup(algo, env)
        runner.train(n_epochs=params['n_epochs'],
                     n_epoch_cycles=params['n_epoch_cycles'],
                     batch_size=params['n_rollout_steps'])

        logger.remove_all()

        return tabular_log_file
コード例 #25
0
ファイル: test_trpo.py プロジェクト: gagkhan/garage
class TestTRPO(TfGraphTestCase):
    def setup_method(self):
        super().setup_method()
        self.env = TfEnv(normalize(gym.make('InvertedDoublePendulum-v2')))
        self.policy = GaussianMLPPolicy(
            env_spec=self.env.spec,
            hidden_sizes=(64, 64),
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
        )
        self.baseline = GaussianMLPBaseline(
            env_spec=self.env.spec,
            regressor_args=dict(hidden_sizes=(32, 32)),
        )

    @pytest.mark.large
    @pytest.mark.mujoco
    def test_trpo_pendulum(self):
        """Test TRPO with Pendulum environment."""
        with LocalTFRunner(snapshot_config, sess=self.sess) as runner:
            algo = TRPO(env_spec=self.env.spec,
                        policy=self.policy,
                        baseline=self.baseline,
                        max_path_length=100,
                        discount=0.99,
                        gae_lambda=0.98,
                        policy_ent_coeff=0.0)
            runner.setup(algo, self.env)
            last_avg_ret = runner.train(n_epochs=10, batch_size=2048)
            assert last_avg_ret > 50

    @pytest.mark.mujoco
    def test_trpo_unknown_kl_constraint(self):
        """Test TRPO with unkown KL constraints."""
        with pytest.raises(ValueError, match='Invalid kl_constraint'):
            TRPO(
                env_spec=self.env.spec,
                policy=self.policy,
                baseline=self.baseline,
                max_path_length=100,
                discount=0.99,
                gae_lambda=0.98,
                policy_ent_coeff=0.0,
                kl_constraint='random kl_constraint',
            )

    @pytest.mark.large
    @pytest.mark.mujoco
    def test_trpo_soft_kl_constraint(self):
        """Test TRPO with unkown KL constraints."""
        with LocalTFRunner(snapshot_config, sess=self.sess) as runner:
            algo = TRPO(env_spec=self.env.spec,
                        policy=self.policy,
                        baseline=self.baseline,
                        max_path_length=100,
                        discount=0.99,
                        gae_lambda=0.98,
                        policy_ent_coeff=0.0,
                        kl_constraint='soft')
            runner.setup(algo, self.env)
            last_avg_ret = runner.train(n_epochs=10, batch_size=2048)
            assert last_avg_ret > 45

    @pytest.mark.large
    @pytest.mark.mujoco
    def test_trpo_lstm_cartpole(self):
        with LocalTFRunner(snapshot_config, sess=self.sess) as runner:
            env = TfEnv(normalize(gym.make('CartPole-v1')))

            policy = CategoricalLSTMPolicy(name='policy', env_spec=env.spec)

            baseline = LinearFeatureBaseline(env_spec=env.spec)

            algo = TRPO(env_spec=env.spec,
                        policy=policy,
                        baseline=baseline,
                        max_path_length=100,
                        discount=0.99,
                        max_kl_step=0.01,
                        optimizer_args=dict(hvp_approach=FiniteDifferenceHvp(
                            base_eps=1e-5)))

            snapshotter.snapshot_dir = './'
            runner.setup(algo, env)
            last_avg_ret = runner.train(n_epochs=10, batch_size=2048)
            assert last_avg_ret > 80

            env.close()

    @pytest.mark.large
    @pytest.mark.mujoco
    def test_trpo_gru_cartpole(self):
        deterministic.set_seed(2)
        with LocalTFRunner(snapshot_config, sess=self.sess) as runner:
            env = TfEnv(normalize(gym.make('CartPole-v1')))

            policy = CategoricalGRUPolicy(name='policy', env_spec=env.spec)

            baseline = LinearFeatureBaseline(env_spec=env.spec)

            algo = TRPO(env_spec=env.spec,
                        policy=policy,
                        baseline=baseline,
                        max_path_length=100,
                        discount=0.99,
                        max_kl_step=0.01,
                        optimizer_args=dict(hvp_approach=FiniteDifferenceHvp(
                            base_eps=1e-5)))

            runner.setup(algo, env)
            last_avg_ret = runner.train(n_epochs=10, batch_size=2048)
            assert last_avg_ret > 80

            env.close()

    def teardown_method(self):
        self.env.close()
        super().teardown_method()
コード例 #26
0
ファイル: test_batch_polopt.py プロジェクト: yus-nas/garage
 def setup_method(self):
     self.env = TfEnv(normalize(gym.make('CartPole-v1')))
     self.baseline = LinearFeatureBaseline(env_spec=self.env.spec)
コード例 #27
0
    def test_no_reset(self):
        with LocalTFRunner(snapshot_config, sess=self.sess) as runner:
            # This tests if off-policy sampler respect batch_size
            # when no_reset is set to True
            env = TfEnv(normalize(gym.make('InvertedDoublePendulum-v2')))
            policy = ContinuousMLPPolicy(env_spec=env.spec,
                                         hidden_sizes=[64, 64],
                                         hidden_nonlinearity=tf.nn.relu,
                                         output_nonlinearity=tf.nn.tanh)
            exploration_policy = AddOrnsteinUhlenbeckNoise(env.spec,
                                                           policy,
                                                           sigma=0.2)
            qf = ContinuousMLPQFunction(env_spec=env.spec,
                                        hidden_sizes=[64, 64],
                                        hidden_nonlinearity=tf.nn.relu)
            replay_buffer = SimpleReplayBuffer(env_spec=env.spec,
                                               size_in_transitions=int(1e6),
                                               time_horizon=100)
            algo = DDPG(
                env_spec=env.spec,
                policy=policy,
                policy_lr=1e-4,
                qf_lr=1e-3,
                qf=qf,
                replay_buffer=replay_buffer,
                target_update_tau=1e-2,
                n_train_steps=50,
                discount=0.9,
                min_buffer_size=int(1e4),
                exploration_policy=exploration_policy,
            )

            sampler = OffPolicyVectorizedSampler(algo, env, 1, no_reset=True)
            sampler.start_worker()

            runner.initialize_tf_vars()

            paths1 = sampler.obtain_samples(0, 5)
            paths2 = sampler.obtain_samples(0, 5)

            len1 = sum([len(path['rewards']) for path in paths1])
            len2 = sum([len(path['rewards']) for path in paths2])

            assert len1 == 5 and len2 == 5, 'Sampler should respect batch_size'
            # yapf: disable
            # When done is False in 1st sampling, the next sampling should be
            # stacked with the last batch in 1st sampling
            case1 = (len(paths1[-1]['rewards']) + len(paths2[0]['rewards'])
                     == paths2[0]['running_length'])
            # When done is True in 1st sampling, the next sampling should be
            # separated
            case2 = len(paths2[0]['rewards']) == paths2[0]['running_length']
            done = paths1[-1]['dones'][-1]
            assert (
                (not done and case1) or (done and case2)
            ), 'Running length should be the length of full path'

            # yapf: enable
            case1 = np.isclose(
                paths1[-1]['rewards'].sum() + paths2[0]['rewards'].sum(),
                paths2[0]['undiscounted_return'])
            case2 = np.isclose(paths2[0]['rewards'].sum(),
                               paths2[0]['undiscounted_return'])
            assert (
                (not done and case1) or (done and case2)
            ), 'Undiscounted_return should be the sum of rewards of full path'
コード例 #28
0
def run_garage(env, seed, log_dir):
    '''
    Create garage model and training.

    Replace the ppo with the algorithm you want to run.

    :param env: Environment of the task.
    :param seed: Random seed for the trial.
    :param log_dir: Log dir path.
    :return:
    '''
    deterministic.set_seed(seed)

    with LocalRunner() as runner:
        env = TfEnv(normalize(env))

        policy = GaussianMLPPolicy(
            env_spec=env.spec,
            hidden_sizes=(64, 64),
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
        )

        baseline = GaussianMLPBaseline(
            env_spec=env.spec,
            regressor_args=dict(
                hidden_sizes=(64, 64),
                use_trust_region=False,
                optimizer=FirstOrderOptimizer,
                optimizer_args=dict(
                    batch_size=32,
                    max_epochs=10,
                    tf_optimizer_args=dict(learning_rate=1e-3),
                ),
            ),
        )

        algo = PPO(
            env_spec=env.spec,
            policy=policy,
            baseline=baseline,
            max_path_length=100,
            discount=0.99,
            gae_lambda=0.95,
            lr_clip_range=0.2,
            policy_ent_coeff=0.0,
            optimizer_args=dict(
                batch_size=32,
                max_epochs=10,
                tf_optimizer_args=dict(learning_rate=1e-3),
            ),
            plot=False,
        )

        # Set up logger since we are not using run_experiment
        tabular_log_file = osp.join(log_dir, 'progress.csv')
        garage_logger.add_output(StdOutput())
        garage_logger.add_output(CsvOutput(tabular_log_file))
        garage_logger.add_output(TensorBoardOutput(log_dir))

        runner.setup(algo, env)
        runner.train(n_epochs=488, batch_size=2048)

        garage_logger.remove_all()

        return tabular_log_file
コード例 #29
0
#!/usr/bin/env python3

import gym

from garage.baselines import LinearFeatureBaseline
from garage.experiment import run_experiment
from garage.tf.algos import TRPO
from garage.tf.envs import TfEnv
from garage.tf.policies import CategoricalMLPPolicy

# Need to wrap in a tf environment and force_reset to true
# see https://github.com/openai/rllab/issues/87#issuecomment-282519288
env = TfEnv(gym.make("CartPole-v0"))

policy = CategoricalMLPPolicy(name="policy",
                              env_spec=env.spec,
                              hidden_sizes=(32, 32))

baseline = LinearFeatureBaseline(env_spec=env.spec)

algo = TRPO(
    env=env,
    policy=policy,
    baseline=baseline,
    batch_size=4000,
    max_path_length=200,
    n_itr=120,
    discount=0.99,
    max_kl_step=0.01,
)
コード例 #30
0
import numpy as np

from garage.baselines import LinearFeatureBaseline
from garage.envs import normalize
from garage.misc.instrument import stub
from garage.misc.instrument import run_experiment

from garage.tf.algos import TRPO
from garage.tf.policies import GaussianMLPPolicy
from garage.tf.envs import TfEnv

from sandbox.embed2learn.envs.mujoco import PR2ArmEnv

env = TfEnv(normalize(PR2ArmEnv()))

policy = GaussianMLPPolicy(
    name="policy",
    env_spec=env.spec,
    hidden_sizes=(32, 32),
)

baseline = LinearFeatureBaseline(env_spec=env.spec)

algo = TRPO(
    env=env,
    policy=policy,
    baseline=baseline,
    batch_size=4000,
    max_path_length=100,
    n_itr=100,
    discount=0.99,