コード例 #1
0
class GaussianMLPBaselineWithModel(Baseline):
    """A value function using Gaussian MLP network."""
    def __init__(
        self,
        env_spec,
        subsample_factor=1.,
        num_seq_inputs=1,
        regressor_args=None,
        name='GaussianMLPBaselineWithModel',
    ):
        """
        Constructor.

        :param env_spec:
        :param subsample_factor:
        :param num_seq_inputs:
        :param regressor_args:
        """
        super().__init__(env_spec)
        if regressor_args is None:
            regressor_args = dict()

        self._regressor = GaussianMLPRegressorWithModel(
            input_shape=(env_spec.observation_space.flat_dim *
                         num_seq_inputs, ),
            output_dim=1,
            name=name,
            **regressor_args)
        self.name = name

    @overrides
    def fit(self, paths):
        """Fit regressor based on paths."""
        observations = np.concatenate([p['observations'] for p in paths])
        returns = np.concatenate([p['returns'] for p in paths])
        self._regressor.fit(observations, returns.reshape((-1, 1)))

    @overrides
    def predict(self, path):
        """Predict value based on paths."""
        return self._regressor.predict(path['observations']).flatten()

    @overrides
    def get_param_values(self, **tags):
        """Get parameter values."""
        return self._regressor.get_param_values(**tags)

    @overrides
    def set_param_values(self, flattened_params, **tags):
        """Set parameter values to val."""
        self._regressor.set_param_values(flattened_params, **tags)

    @overrides
    def get_params_internal(self, **tags):
        """Get internal parameters."""
        return self._regressor.get_params_internal(**tags)
コード例 #2
0
class GaussianMLPBaselineWithModel(Baseline):
    """A value function using Gaussian MLP network."""
    def __init__(
        self,
        env_spec,
        subsample_factor=1.,
        num_seq_inputs=1,
        regressor_args=None,
        name='GaussianMLPBaselineWithModel',
    ):
        """
        Gaussian MLP Baseline with Model.

        It fits the input data to a gaussian distribution estimated by
        a MLP.

        Args:
            env_spec (garage.envs.env_spec.EnvSpec): Environment specification.
            subsample_factor (float): The factor to subsample the data. By
                default it is 1.0, which means using all the data.
            num_seq_inputs (float): Number of sequence per input. By default
                it is 1.0, which means only one single sequence.
            regressor_args (dict): Arguments for regressor.
        """
        super().__init__(env_spec)
        if regressor_args is None:
            regressor_args = dict()

        self._regressor = GaussianMLPRegressorWithModel(
            input_shape=(env_spec.observation_space.flat_dim *
                         num_seq_inputs, ),
            output_dim=1,
            name=name,
            **regressor_args)
        self.name = name

    @overrides
    def fit(self, paths):
        """Fit regressor based on paths."""
        observations = np.concatenate([p['observations'] for p in paths])
        returns = np.concatenate([p['returns'] for p in paths])
        self._regressor.fit(observations, returns.reshape((-1, 1)))

    @overrides
    def predict(self, path):
        """Predict value based on paths."""
        return self._regressor.predict(path['observations']).flatten()

    @overrides
    def get_param_values(self, **tags):
        """Get parameter values."""
        return self._regressor.get_param_values(**tags)

    @overrides
    def set_param_values(self, flattened_params, **tags):
        """Set parameter values to val."""
        self._regressor.set_param_values(flattened_params, **tags)

    @overrides
    def get_params_internal(self, **tags):
        """Get internal parameters."""
        return self._regressor.get_params_internal(**tags)