コード例 #1
0
def test_std_network_output_values_with_batch(input_dim, output_dim,
                                              hidden_sizes, learn_std):
    init_std = 2.

    module = GaussianMLPModule(input_dim=input_dim,
                               output_dim=output_dim,
                               hidden_sizes=hidden_sizes,
                               init_std=init_std,
                               hidden_nonlinearity=None,
                               std_parameterization='exp',
                               hidden_w_init=nn.init.ones_,
                               output_w_init=nn.init.ones_,
                               learn_std=learn_std)

    batch_size = 5
    dist = module(torch.ones([batch_size, input_dim]))

    exp_mean = torch.full(
        (batch_size, output_dim),
        input_dim * (torch.Tensor(hidden_sizes).prod().item()),
        dtype=torch.float)
    exp_variance = init_std**2

    assert dist.mean.equal(exp_mean)
    assert dist.variance.equal(
        torch.full((batch_size, output_dim), exp_variance, dtype=torch.float))
    assert dist.rsample().shape == (batch_size, output_dim)
コード例 #2
0
def test_softplus_min_std(input_dim, output_dim, hidden_sizes):
    min_value = 2.

    module = GaussianMLPModule(input_dim=input_dim,
                               output_dim=output_dim,
                               hidden_sizes=hidden_sizes,
                               init_std=1.,
                               min_std=min_value,
                               hidden_nonlinearity=None,
                               std_parameterization='softplus',
                               hidden_w_init=nn.init.zeros_,
                               output_w_init=nn.init.zeros_)

    dist = module(torch.ones(input_dim))

    exp_variance = torch.Tensor([min_value]).exp().add(1.).log()**2

    assert dist.variance.equal(torch.full((output_dim, ), exp_variance[0]))
コード例 #3
0
def test_exp_max_std(input_dim, output_dim, hidden_sizes):
    max_value = 1.

    module = GaussianMLPModule(input_dim=input_dim,
                               output_dim=output_dim,
                               hidden_sizes=hidden_sizes,
                               init_std=10.,
                               max_std=max_value,
                               hidden_nonlinearity=None,
                               std_parameterization='exp',
                               hidden_w_init=nn.init.zeros_,
                               output_w_init=nn.init.zeros_)

    dist = module(torch.ones(input_dim))

    exp_variance = max_value**2

    assert dist.variance.equal(torch.full((output_dim, ), exp_variance))
コード例 #4
0
def test_softplus_max_std(input_dim, output_dim, hidden_sizes):
    max_value = 1.

    module = GaussianMLPModule(input_dim=input_dim,
                               output_dim=output_dim,
                               hidden_sizes=hidden_sizes,
                               init_std=10,
                               max_std=max_value,
                               hidden_nonlinearity=None,
                               std_parameterization='softplus',
                               hidden_w_init=nn.init.ones_,
                               output_w_init=nn.init.ones_)

    dist = module(torch.ones(input_dim))

    exp_variance = torch.Tensor([max_value]).exp().add(1.).log()**2

    assert torch.equal(
        dist.variance,
        torch.full((output_dim, ), exp_variance[0], dtype=torch.float))
コード例 #5
0
def test_std_network_output_values(input_dim, output_dim, hidden_sizes):
    init_std = 2.

    module = GaussianMLPModule(input_dim=input_dim,
                               output_dim=output_dim,
                               hidden_sizes=hidden_sizes,
                               init_std=init_std,
                               hidden_nonlinearity=None,
                               std_parameterization='exp',
                               hidden_w_init=nn.init.ones_,
                               output_w_init=nn.init.ones_)

    dist = module(torch.ones(input_dim))

    exp_mean = torch.full(
        (output_dim, ), input_dim * (torch.Tensor(hidden_sizes).prod().item()))
    exp_variance = init_std**2

    assert dist.mean.equal(exp_mean)
    assert dist.variance.equal(torch.full((output_dim, ), exp_variance))
    assert dist.rsample().shape == (output_dim, )
コード例 #6
0
def test_softplus_std_network_output_values(input_dim, output_dim,
                                            hidden_sizes):
    init_std = 2.

    module = GaussianMLPModule(input_dim=input_dim,
                               output_dim=output_dim,
                               hidden_sizes=hidden_sizes,
                               init_std=init_std,
                               hidden_nonlinearity=None,
                               std_parameterization='softplus',
                               hidden_w_init=nn.init.ones_,
                               output_w_init=nn.init.ones_)

    dist = module(torch.ones(input_dim))

    exp_mean = input_dim * torch.Tensor(hidden_sizes).prod().item()
    exp_variance = torch.Tensor([init_std]).exp().add(1.).log()**2

    assert dist.mean.equal(
        torch.full((output_dim, ), exp_mean, dtype=torch.float))
    assert dist.variance.equal(
        torch.full((output_dim, ), exp_variance[0], dtype=torch.float))
    assert dist.rsample().shape == (output_dim, )
コード例 #7
0
def test_unknown_std_parameterization():
    with pytest.raises(NotImplementedError):
        GaussianMLPModule(input_dim=1,
                          output_dim=1,
                          std_parameterization='unknown')