コード例 #1
0
def main(argv):

    if not argv:
        argv = sys.argv

    # setup command line parser
    parser = optparse.OptionParser(
        version=
        "%prog version: $Id: script_template.py 2871 2010-03-03 10:20:44Z andreas $",
        usage=globals()["__doc__"])

    parser.add_option("-a",
                      "--annotation-file",
                      "--annotations",
                      dest="annotation_files",
                      type="string",
                      action="append",
                      help="filename with annotations [default=%default].")

    parser.add_option(
        "-s",
        "--segment-file",
        "--segments",
        dest="segment_files",
        type="string",
        action="append",
        help=
        "filename with segments. Also accepts a glob in parentheses [default=%default]."
    )

    parser.add_option(
        "-w",
        "--workspace-file",
        "--workspace",
        dest="workspace_files",
        type="string",
        action="append",
        help=
        "filename with workspace segments. Also accepts a glob in parentheses [default=%default]."
    )

    parser.add_option(
        "-i",
        "--isochore-file",
        "--isochores",
        dest="isochore_files",
        type="string",
        action="append",
        help=
        "filename with isochore segments. Also accepts a glob in parentheses [default=%default]."
    )

    parser.add_option(
        "-o",
        "--order",
        dest="output_order",
        type="choice",
        choices=("track", "annotation", "fold", "pvalue", "qvalue"),
        help="order results in output by fold, track, etc. [default=%default]."
    )

    parser.add_option(
        "-q",
        "--qvalue-method",
        dest="qvalue_method",
        type="choice",
        choices=("storey", "BH", "bonferroni", "holm", "hommel", "hochberg",
                 "BY", "none"),
        help=
        "method to perform multiple testing correction by controlling the fdr [default=%default]."
    )

    parser.add_option("--qvalue-lambda",
                      dest="qvalue_lambda",
                      type="float",
                      help="fdr computation: lambda [default=%default].")

    parser.add_option(
        "--qvalue-pi0-method",
        dest="qvalue_pi0_method",
        type="choice",
        choices=("smoother", "bootstrap"),
        help="fdr computation: method for estimating pi0 [default=%default].")
    parser.add_option(
        "--descriptions",
        dest="input_filename_descriptions",
        type="string",
        help="filename mapping annotation terms to descriptions. "
        " if given, the output table will contain additional columns "
        " [default=%default]")

    parser.add_option(
        "--ignore-segment-tracks",
        dest="ignore_segment_tracks",
        action="store_true",
        help=
        "ignore segment tracks - all segments belong to one track [default=%default]"
    )

    parser.add_option(
        "--enable-split-tracks",
        dest="enable_split_tracks",
        action="store_true",
        help="permit the same track to be in multiple files [default=%default]"
    )

    parser.add_option("--output-bed",
                      dest="output_bed",
                      type="choice",
                      action="append",
                      choices=("all", "annotations", "segments", "workspaces",
                               "isochores", "overlap"),
                      help="output bed files [default=%default].")

    parser.add_option("--output-stats",
                      dest="output_stats",
                      type="choice",
                      action="append",
                      choices=("all", "annotations", "segments", "workspaces",
                               "isochores", "overlap"),
                      help="output overlap summary stats [default=%default].")

    parser.add_option(
        "--restrict-workspace",
        dest="restrict_workspace",
        action="store_true",
        help="restrict workspace to those segments that contain both track"
        " and annotations [default=%default]")

    parser.add_option("--counter",
                      dest="counters",
                      type="choice",
                      action="append",
                      choices=("binom", "hyperg"),
                      help="counter to use [default=%default].")

    parser.add_option(
        "--output-tables-pattern",
        dest="output_tables_pattern",
        type="string",
        help=
        "output pattern for result tables. Used if there are multiple counters used [default=%default]."
    )

    parser.set_defaults(annotation_files=[],
                        segment_files=[],
                        workspace_files=[],
                        sample_files=[],
                        counters=[],
                        output_stats=[],
                        output_bed=[],
                        output_tables_pattern="%s.tsv.gz",
                        output_order="fold",
                        input_filename_counts=None,
                        input_filename_results=None,
                        pvalue_method="empirical",
                        output_plots_pattern=None,
                        output_samples_pattern=None,
                        qvalue_method="storey",
                        qvalue_lambda=None,
                        qvalue_pi0_method="smoother",
                        ignore_segment_tracks=False,
                        input_filename_descriptions=None,
                        conditional="unconditional",
                        conditional_extension=None,
                        conditional_expansion=None,
                        restrict_workspace=False,
                        enable_split_tracks=False,
                        shift_expansion=2.0,
                        shift_extension=0,
                        overlap_mode="midpoint",
                        truncate_workspace_to_annotations=False,
                        truncate_segments_to_workspace=False)

    # add common options (-h/--help, ...) and parse command line
    (options, args) = E.Start(parser, argv=argv, add_output_options=True)

    tstart = time.time()

    if len(options.counters) == 0:
        options.counters.append("binom")

    ############################################
    segments, annotations, workspaces, isochores = IO.buildSegments(options)
    E.info("intervals loaded in %i seconds" % (time.time() - tstart))

    # filter segments by workspace
    workspace = IO.applyIsochores(segments, annotations, workspaces, options,
                                  isochores)

    ############################################
    description_header, descriptions, description_width = IO.readDescriptions(
        options)

    ############################################
    ############################################
    # compute per contig

    # compute bases covered by workspace
    workspace2basecoverage, isochores = {}, []
    for contig, ww in workspace.iteritems():
        workspace2basecoverage[contig] = ww.sum()
        isochores.append(contig)

    # compute percentage of bases covered by annotations in workspace
    # per isochore
    annotation2basecoverage = collections.defaultdict(dict)
    for annotation, aa in annotations.iteritems():
        for isochore, a in aa.iteritems():
            # need to truncate to workspace?
            annotation2basecoverage[annotation][isochore] = a.sum()

    results_per_contig = collections.defaultdict(list)

    E.info("computing counts per isochore")

    # results per isochore

    def emptyResult(segment, annotation, isochore, counter,
                    nsegments_in_workspace, basecoverage_annotation,
                    basecoverage_workspace):
        return GREAT_RESULT._make((
            segment,
            annotation,
            isochore,
            counter,
            0,  # observed
            0,  # expected
            nsegments_in_workspace,
            0,  # nannotations_in_workspace
            0,  # nsegments_overlapping_annotation
            0,  # nannotations_overlapping_segments
            0,  # basecoverage_intersection
            0,  # basecoverage_segments
            basecoverage_annotation,
            basecoverage_workspace,
            0.0,
            1.0,
            1.0,
            1.0))

    for isochore in isochores:
        basecoverage_workspace = workspace2basecoverage[isochore]

        # iterate over all isochores
        for segment, segmentdict in segments.iteritems():
            try:
                ss = segmentdict[isochore]
                # select segments overlapping workspace
                segments_in_workspace = GatSegmentList.SegmentList(clone=ss)
                segments_in_workspace.intersect(workspace[isochore])
                # number of segments in workspace
                nsegments_in_workspace = len(segments_in_workspace)
            except KeyError:
                ss = None

            basecoverage_segments = segments_in_workspace.sum()

            for annotation, annotationdict in annotations.iteritems():

                # if annotation != "GO:0030957": continue

                try:
                    aa = annotationdict[isochore]
                except KeyError:
                    aa = None

                # p_A: proportion of bases covered by annotation
                try:
                    basecoverage_annotation = annotation2basecoverage[
                        annotation][isochore]
                except KeyError:
                    basecoverage_annotation = 0

                if ss == None or aa == None:
                    for counter in options.counters:
                        results_per_contig[(counter, segment,
                                            annotation)].append(
                                                emptyResult(
                                                    segment, annotation,
                                                    isochore, counter,
                                                    nsegments_in_workspace,
                                                    basecoverage_annotation,
                                                    basecoverage_workspace))
                    continue

                # select segments overlapping annotation
                segments_overlapping_annotation = GatSegmentList.SegmentList(
                    clone=ss)
                segments_overlapping_annotation.intersect(
                    annotations[annotation][isochore])
                # number of segments in annotation
                nsegments_overlapping_annotation = ss.intersectionWithSegments(
                    annotations[annotation][isochore],
                    mode=options.overlap_mode)

                # number of nucleotides at the intersection of segments,
                # annotation and workspace
                basecoverage_intersection = segments_overlapping_annotation.sum(
                )

                annotations_overlapping_segments = GatSegmentList.SegmentList(
                    clone=aa)
                annotations_overlapping_segments.intersect(ss)
                nannotations_overlapping_segments = len(
                    annotations_overlapping_segments)

                nannotations_in_workspace = len(aa)
                if nannotations_in_workspace == 0:
                    for counter in options.counters:
                        results_per_contig[(counter, segment,
                                            annotation)].append(
                                                emptyResult(
                                                    segment, annotation,
                                                    isochore, counter,
                                                    nsegments_in_workspace,
                                                    basecoverage_annotation,
                                                    basecoverage_workspace))
                    continue

                fraction_coverage_annotation = basecoverage_annotation / \
                    float(basecoverage_workspace)
                fraction_hit_annotation = float(
                    nannotations_overlapping_segments
                ) / nannotations_in_workspace

                for counter in options.counters:
                    if counter.startswith("binom"):
                        # GREAT binomial probability over "regions"
                        # n = number of genomic regions = nannotations_in_workspace
                        # ppi = fraction of genome annotated by annotation = fraction_coverage_annotation
                        # kpi = genomic regions with annotation hit by segments = nannotations_in_segments
                        # sf = survival functions = 1 -cdf
                        # probability of observing >kpi in a sample of n where the probabily of succes is
                        # ppi.
                        pvalue = scipy.stats.binom.sf(
                            nsegments_overlapping_annotation - 1,
                            nsegments_in_workspace,
                            fraction_coverage_annotation)

                        expected = fraction_coverage_annotation * \
                            nsegments_in_workspace
                        observed = nsegments_overlapping_annotation

                    elif counter.startswith("hyperg"):

                        # hypergeometric probability over nucleotides
                        # Sampling without replacement
                        # x,M,n,M
                        # x = observed number of nucleotides in overlap of segments,annotations and workspace
                        # M = number of nucleotides in workspace
                        # n = number of nucleotides in annotations (and workspace)
                        # N = number of nucleotides in segments (and workspace)
                        # P-value of obtaining >x number of nucleotides
                        # overlapping.
                        rv = scipy.stats.hypergeom(basecoverage_workspace,
                                                   basecoverage_annotation,
                                                   basecoverage_segments)

                        pvalue = rv.sf(basecoverage_intersection)
                        expected = rv.mean()
                        observed = basecoverage_intersection

                    if expected != 0:
                        fold = float(observed) / expected
                    else:
                        fold = 1.0

                    r = GREAT_RESULT._make(
                        (segment, annotation, isochore, counter, observed,
                         expected, nsegments_in_workspace,
                         nannotations_in_workspace,
                         nsegments_overlapping_annotation,
                         nannotations_overlapping_segments,
                         basecoverage_intersection, basecoverage_segments,
                         basecoverage_annotation, basecoverage_workspace,
                         fraction_coverage_annotation, fold, pvalue, 1.0))
                    # print "\t".join( map(str, r))
                    results_per_contig[(counter, segment,
                                        annotation)].append(r)

    E.info("merging counts per isochore")

    # compute sums
    results = []

    for niteration, pair in enumerate(results_per_contig.iteritems()):

        counter, segment, annotation = pair[0]
        data = pair[1]

        nsegments_in_workspace = sum([x.nsegments_in_workspace for x in data])
        nsegments_overlapping_annotation = sum([x.observed for x in data])
        nannotations_in_workspace = sum(
            [x.nannotations_in_workspace for x in data])
        nannotations_overlapping_segments = sum(
            [x.nannotations_overlapping_segments for x in data])

        basecoverage_intersection = sum(
            [x.basecoverage_intersection for x in data])
        basecoverage_segments = sum([x.basecoverage_segments for x in data])
        basecoverage_annotation = sum(
            [x.basecoverage_annotation for x in data])
        basecoverage_workspace = sum([x.basecoverage_workspace for x in data])

        fraction_coverage_annotation = basecoverage_annotation / \
            float(basecoverage_workspace)

        if counter.startswith("binom"):
            pvalue = scipy.stats.binom.sf(nsegments_overlapping_annotation - 1,
                                          nsegments_in_workspace,
                                          fraction_coverage_annotation)
            expected = fraction_coverage_annotation * nsegments_in_workspace
            observed = nsegments_overlapping_annotation
        elif counter.startswith("hyperg"):
            rv = scipy.stats.hypergeom(basecoverage_workspace,
                                       basecoverage_annotation,
                                       basecoverage_segments)

            pvalue = rv.sf(basecoverage_intersection)
            expected = rv.mean()
            observed = basecoverage_intersection

        if expected != 0:
            fold = float(observed) / expected
        else:
            fold = 1.0

        r = GREAT_RESULT._make(
            (segment, annotation, "all", counter, observed, expected,
             nsegments_in_workspace, nannotations_in_workspace,
             nsegments_overlapping_annotation,
             nannotations_overlapping_segments, basecoverage_intersection,
             basecoverage_segments, basecoverage_annotation,
             basecoverage_workspace, fraction_coverage_annotation, fold,
             pvalue, 1.0))

        results.append(r)

    IO.outputResults(results, options, GREAT_RESULT._fields,
                     description_header, description_width, descriptions)

    E.Stop()
コード例 #2
0
ファイル: gat-compare.py プロジェクト: zongchangli/gat
def main(argv=None):
    """script main.

    parses command line options in sys.argv, unless *argv* is given.
    """

    if not argv:
        argv = sys.argv

    # setup command line parser
    parser = optparse.OptionParser(
        version=
        "%prog version: $Id: script_template.py 2871 2010-03-03 10:20:44Z andreas $",
        usage=globals()["__doc__"])

    parser.add_option(
        "-o",
        "--order",
        dest="output_order",
        type="choice",
        choices=("track", "annotation", "fold", "pvalue", "qvalue",
                 "observed"),
        help="order results in output by fold, track, etc. [default=%default]."
    )

    parser.add_option("-p",
                      "--pvalue-method",
                      dest="pvalue_method",
                      type="choice",
                      choices=(
                          "empirical",
                          "norm",
                      ),
                      help="type of pvalue reported [default=%default].")

    parser.add_option(
        "-q",
        "--qvalue-method",
        dest="qvalue_method",
        type="choice",
        choices=("storey", "BH", "bonferroni", "holm", "hommel", "hochberg",
                 "BY", "none"),
        help=
        "method to perform multiple testing correction by controlling the fdr [default=%default]."
    )

    parser.add_option("--qvalue-lambda",
                      dest="qvalue_lambda",
                      type="float",
                      help="fdr computation: lambda [default=%default].")

    parser.add_option(
        "--qvalue-pi0-method",
        dest="qvalue_pi0_method",
        type="choice",
        choices=("smoother", "bootstrap"),
        help="fdr computation: method for estimating pi0 [default=%default].")

    parser.add_option(
        "--descriptions",
        dest="input_filename_descriptions",
        type="string",
        help="filename mapping annotation terms to descriptions. "
        " if given, the output table will contain additional columns "
        " [default=%default]")

    parser.add_option(
        "--pseudo-count",
        dest="pseudo_count",
        type="float",
        help=
        "pseudo count. The pseudo count is added to both the observed and expected overlap. "
        " Using a pseudo-count avoids gat reporting fold changes of 0 [default=%default]."
    )

    parser.add_option("--output-plots-pattern",
                      dest="output_plots_pattern",
                      type="string",
                      help="output pattern for plots [default=%default]")

    parser.set_defaults(
        pvalue_method="empirical",
        qvalue_method="BH",
        qvalue_lambda=None,
        qvalue_pi0_method="smoother",
        # pseudo count for fold change computation to avoid 0 fc
        pseudo_count=1.0,
        output_order="observed",
    )

    # add common options (-h/--help, ...) and parse command line
    (options, args) = E.Start(parser, argv=argv, add_output_options=True)

    input_filenames_counts = args

    ##################################################
    E.info("received %i filenames with counts" % len(input_filenames_counts))

    ##################################################
    description_header, descriptions, description_width = IO.readDescriptions(
        options)

    all_annotator_results = []

    for input_filename_counts in input_filenames_counts:

        E.info("processing %s" % input_filename_counts)

        annotator_results = gat.fromCounts(input_filename_counts)

        ##################################################
        if options.pvalue_method != "empirical":
            E.info("updating pvalues to %s" % options.pvalue_method)
            GatEngine.updatePValues(annotator_results, options.pvalue_method)

        ##################################################
        ##################################################
        ##################################################
        # compute global fdr
        ##################################################
        E.info("computing FDR statistics")
        GatEngine.updateQValues(annotator_results,
                                method=options.qvalue_method,
                                vlambda=options.qvalue_lambda,
                                pi0_method=options.qvalue_pi0_method)

        all_annotator_results.append(annotator_results)

    pseudo_count = options.pseudo_count
    results = []

    if len(all_annotator_results) == 1:
        E.info("performing pairwise comparison within a single file")

        # collect all annotations
        annotations, segments = list(), set()
        for x in all_annotator_results[0]:
            segments.add(x.track)
            annotations.append(x)

        if len(segments) != 1:
            raise NotImplementedError("multiple segments of interest")

        for data1, data2 in itertools.combinations(annotations, 2):

            # note that fold changes can be very large if there are 0 samples
            # this is fine for getting the distributional params (mean, stddev)
            fold_changes1 = data1.observed / (data1.samples + pseudo_count)
            fold_changes2 = data2.observed / (data2.samples + pseudo_count)

            # add a separate fc pseudo-count to avoid 0 values
            fold_changes1 += 0.0001
            fold_changes2 += 0.0001

            # Test is if relative fold change rfc is different from 1
            # note: rfc = fc1 / fc2 = obs1 / exp1 * obs2 / exp2
            #                       = obs1 / obs2 * exp2 / exp1
            # Thus, it is equivalent to test rfc = obs1/obs2 versus exp2 / exp1
            #
            # Convert to log space for easier plotting
            # Move the observed fold ratio in order to get an idea of the magnitude
            # of the underlying fold change
            delta_fold = data2.fold - data1.fold
            sampled_delta_fold = numpy.log(
                fold_changes1 / fold_changes2) + delta_fold
            observed_delta_fold = 0.0 + delta_fold

            result = GatEngine.AnnotatorResult(data1.annotation,
                                               data2.annotation,
                                               "na",
                                               observed_delta_fold,
                                               sampled_delta_fold,
                                               reference=None,
                                               pseudo_count=0)

            results.append(result)

    else:
        E.info("performing pairwise comparison between multiple files")

        ##################################################
        # perform pairwise comparison
        for index1, index2 in itertools.combinations(
                range(len(input_filenames_counts)), 2):
            E.info("comparing %i and %i" % (index1, index2))
            a, b = all_annotator_results[index1], all_annotator_results[index2]

            # index results in a and b
            aa = collections.defaultdict(dict)
            for x in a:
                aa[x.track][x.annotation] = x

            bb = collections.defaultdict(dict)
            for x in b:
                bb[x.track][x.annotation] = x

            tracks_a = set(aa.keys())
            tracks_b = set(bb.keys())
            shared_tracks = tracks_a.intersection(tracks_b)
            if len(shared_tracks) == 0:
                E.warn("no shared tracks between {} and {}".format(
                    index1, index2))

            for track in sorted(shared_tracks):
                E.debug("computing results for track {}".format(track))
                # get shared annotations
                annotations1 = aa[track].keys()
                annotations2 = bb[track].keys()
                shared_annotations = list(
                    set(annotations1).intersection(set(annotations2)))
                E.info("%i shared annotations" % len(shared_annotations))

                for annotation in shared_annotations:

                    # if not annotation.startswith("Ram:"): continue

                    data1 = aa[track][annotation]
                    data2 = bb[track][annotation]

                    # note that fold changes can be very large if there are 0 samples
                    # this is fine for getting the distributional params (mean,
                    # stddev)
                    fold_changes1 = data1.observed / (data1.samples +
                                                      pseudo_count)
                    fold_changes2 = data2.observed / (data2.samples +
                                                      pseudo_count)

                    # add a separate fc pseudo-count to avoid 0 values
                    fold_changes1 += 0.0001
                    fold_changes2 += 0.0001

                    # Test is if relative fold change rfc is different from 1
                    # note: rfc = fc1 / fc2 = obs1 / exp1 * obs2 / exp2
                    #                       = obs1 / obs2 * exp2 / exp1
                    # Thus, it is equivalent to test rfc = obs1/obs2 versus exp2 / exp1
                    #
                    # Convert to log space for easier plotting
                    # Move the observed fold ratio in order to get an idea of the magnitude
                    # of the underlying fold change
                    delta_fold = data2.fold - data1.fold
                    sampled_delta_fold = numpy.log(
                        fold_changes1 / fold_changes2) + delta_fold
                    observed_delta_fold = 0.0 + delta_fold

                    result = GatEngine.AnnotatorResult(track,
                                                       annotation,
                                                       "na",
                                                       observed_delta_fold,
                                                       sampled_delta_fold,
                                                       reference=None,
                                                       pseudo_count=0)

                    results.append(result)

    if len(results) == 0:
        E.critical("no results found")
        E.Stop()
        return

    IO.outputResults(results,
                     options,
                     GatEngine.AnnotatorResult.headers,
                     description_header,
                     description_width,
                     descriptions,
                     format_observed="%6.4f")

    IO.plotResults(results, options)

    # write footer and output benchmark information.
    E.Stop()
コード例 #3
0
ファイル: gat-plot.py プロジェクト: zongchangli/gat
def main(argv=None):
    """script main.

    parses command line options in sys.argv, unless *argv* is given.
    """

    if not argv:
        argv = sys.argv

    # setup command line parser
    parser = optparse.OptionParser(version="%prog version: $Id: script_template.py 2871 2010-03-03 10:20:44Z andreas $",
                                   usage=globals()["__doc__"])

    parser.add_option("-l", "--sample-file", dest="sample_files", type="string", action="append",
                      help="filename with sample files. Start processing from samples [default=%default].")

    parser.add_option("-o", "--order", dest="output_order", type="choice",
                      choices=(
                          "track", "annotation", "fold", "pvalue", "qvalue"),
                      help="order results in output by fold, track, etc. [default=%default].")

    parser.add_option("-p", "--pvalue-method", dest="pvalue_method", type="choice",
                      choices=("empirical", "norm", ),
                      help="type of pvalue reported [default=%default].")

    parser.add_option("--results-file", dest="input_filename_results", type="string",
                      help="start processing from results - no segments required [default=%default].")

    parser.add_option("--output-plots-pattern", dest="output_plots_pattern", type="string",
                      help="output pattern for plots [default=%default]")

    parser.add_option("--output-samples-pattern", dest="output_samples_pattern", type="string",
                      help="output pattern for samples. Samples are stored in bed format, one for "
                      " each segment [default=%default]")

    parser.add_option("--plots", dest="plots", type="choice",
                      choices=("all",
                               "bars-per-track",
                               "bars", ),
                      help="plots to be created [default=%default].")

    parser.set_defaults(
        sample_files=[],
        num_samples=1000,
        output_stats=[],
        output_filename_counts=None,
        output_order="fold",
        input_filename_results=None,
        pvalue_method="empirical",
        output_plots_pattern=None,
        plots=[],
    )

    # add common options (-h/--help, ...) and parse command line
    (options, args) = E.Start(parser, argv=argv, add_output_options=True)

    annotator_results = IO.readAnnotatorResults(options.input_filename_results)

    if "speparate-bars" in options.plots:
        plotBarplots(annotator_results, options)
    if "bars" in options.plots:
        plotBarplot(annotator_results, options)

    # write footer and output benchmark information.
    E.Stop()
コード例 #4
0
ファイル: gat-geneset.py プロジェクト: zongchangli/gat
def main(argv):

    if not argv:
        argv = sys.argv

    # setup command line parser
    parser = optparse.OptionParser(version="%prog version: $Id: script_template.py 2871 2010-03-03 10:20:44Z andreas $",
                                   usage=globals()["__doc__"])

    parser.add_option("-a", "--gene-file", "--annotations", dest="annotation_files", type="string", action="append",
                      help="filename with annotations - here, location of genes [default=%default].")

    parser.add_option("-s", "--segment-file", "--segments", dest="segment_files", type="string", action="append",
                      help="filename with segments. Also accepts a glob in parentheses [default=%default].")

    parser.add_option("-w", "--workspace-file", "--workspace", dest="workspace_files", type="string", action="append",
                      help="filename with workspace segments. Also accepts a glob in parentheses [default=%default].")

    parser.add_option("-g", "--number-of-genes", dest="number_of_genes", type="int",
                      help="total number of genes [default=%default]")

    parser.add_option("-m", "--annotation-file", dest="annotation_file", type="string",
                      help="filename mapping genes to annotations [default=%default]")

    parser.add_option("-o", "--order", dest="output_order", type="choice",
                      choices=(
                          "track", "annotation", "fold", "pvalue", "qvalue"),
                      help="order results in output by fold, track, etc. [default=%default].")

    parser.add_option("-q", "--qvalue-method", dest="qvalue_method", type="choice",
                      choices=(
                          "storey", "BH", "bonferroni", "holm", "hommel", "hochberg", "BY", "none"),
                      help="method to perform multiple testing correction by controlling the fdr [default=%default].")

    parser.add_option("--qvalue-lambda", dest="qvalue_lambda", type="float",
                      help="fdr computation: lambda [default=%default].")

    parser.add_option("--qvalue-pi0-method", dest="qvalue_pi0_method", type="choice",
                      choices=("smoother", "bootstrap"),
                      help="fdr computation: method for estimating pi0 [default=%default].")
    parser.add_option("--descriptions", dest="input_filename_descriptions", type="string",
                      help="filename mapping annotation terms to descriptions. "
                      " if given, the output table will contain additional columns "
                      " [default=%default]")

    parser.add_option("--ignore-segment-tracks", dest="ignore_segment_tracks", action="store_true",
                      help="ignore segment tracks - all segments belong to one track [default=%default]")

    parser.add_option("--enable-split-tracks", dest="enable_split_tracks", action="store_true",
                      help="permit the same track to be in multiple files [default=%default]")

    parser.add_option("--output-bed", dest="output_bed", type="choice", action="append",
                      choices=("all",
                               "annotations", "segments",
                               "workspaces", "isochores",
                               "overlap"),
                      help="output bed files [default=%default].")

    parser.add_option("--output-stats", dest="output_stats", type="choice", action="append",
                      choices=("all",
                               "annotations", "segments",
                               "workspaces", "isochores",
                               "overlap"),
                      help="output overlap summary stats [default=%default].")

    parser.set_defaults(
        annotation_files=[],
        segment_files=[],
        workspace_files=[],
        sample_files=[],
        annotation_file=None,
        num_samples=1000,
        nbuckets=100000,
        bucket_size=1,
        counter="nucleotide-overlap",
        output_stats=[],
        output_bed=[],
        output_filename_counts=None,
        output_order="fold",
        cache=None,
        input_filename_counts=None,
        input_filename_results=None,
        pvalue_method="empirical",
        output_plots_pattern=None,
        output_samples_pattern=None,
        qvalue_method="storey",
        qvalue_lambda=None,
        qvalue_pi0_method="smoother",
        sampler="annotator",
        ignore_segment_tracks=False,
        input_filename_descriptions=None,
        conditional="unconditional",
        conditional_extension=None,
        conditional_expansion=None,
        restrict_workspace=False,
        enable_split_tracks=False,
        shift_expansion=2.0,
        shift_extension=0,
        overlap_mode="midpoint",
        number_of_genes=None,
    )

    # add common options (-h/--help, ...) and parse command line
    (options, args) = E.Start(parser, argv=argv, add_output_options=True)

    tstart = time.time()

    # load segments
    options.segment_files = IO.expandGlobs(options.segment_files)
    options.annotation_files = IO.expandGlobs(options.annotation_files)
    options.workspace_files = IO.expandGlobs(options.workspace_files)

    # read one or more segment files
    segments = IO.readSegmentList("segments", options.segment_files, options)
    if options.ignore_segment_tracks:
        segments.merge(delete=True)
        E.info("merged all segments into one track with %i segments" %
               len(segments))

    if len(segments) > 1000:
        raise ValueError(
            "too many (%i) segment files - use track definitions or --ignore-segment-tracks" % len(segments))

    # load workspace
    workspaces = IO.readSegmentList(
        "workspaces", options.workspace_files, options, options.enable_split_tracks)

    # intersect workspaces to build a single workspace
    E.info("collapsing workspaces")
    workspaces.collapse()

    # use merged workspace only, discard others
    workspaces.restrict("collapsed")
    workspace = workspaces["collapsed"]

    E.info("intervals loaded in %i seconds" % (time.time() - tstart))

    ############################################
    # load table mapping a gene id to annotations
    gene2annotations = IOTools.readMultiMap(IOTools.openFile(options.annotation_file),
                                            has_header=True)
    annotations = set([y for x in gene2annotations.values() for y in x])
    E.info("loaded %i annotations for %i genes" %
           (len(gene2annotations), len(annotations)))

    ############################################
    # load bed file with gene coordinates
    assert len(options.annotation_files) == 1
    indexed_genes = collections.defaultdict(Intersecter)
    total_genes = 0
    # number of genes per contig
    contig2ngenes = collections.defaultdict(int)
    # compute number of genes with a particular annotation
    # per contig
    annotation2ngenes = collections.defaultdict(int)
    for line in IOTools.openFile(options.annotation_files[0]):
        if line.startswith("#"):
            continue
        contig, start, end, gene_id = line[:-1].split("\t")[:4]
        indexed_genes[contig].add_interval(
            Interval(int(start), int(end), gene_id))
        contig2ngenes[contig] += 1
        total_genes += 1
        try:
            for annotation in gene2annotations[gene_id]:
                annotation2ngenes[annotation] += 1
        except KeyError:
            pass
    E.info("indexed locations for %i contigs" % len(indexed_genes))

    ############################################
    description_header, descriptions, description_width = IO.readDescriptions(
        options)

    ############################################
    ############################################
    # compute results
    E.info("computing counts")

    results = []
    # iterate over segments
    for segment, segmentdict in segments.iteritems():

        # genes hit by segments per annotation
        genes_hit_by_segments_with_annotations = collections.defaultdict(int)

        # genes hit by segments
        genes_hit_by_segments = 0

        for contig, ss in segmentdict.iteritems():
            for start, end in ss:
                overlapping_genes = list(
                    indexed_genes[contig].find(start, end))
                genes_hit_by_segments += len(overlapping_genes)
                for x in overlapping_genes:
                    gene_id = x.value
                    try:
                        for annotation in gene2annotations[gene_id]:
                            genes_hit_by_segments_with_annotations[
                                annotation] += 1
                    except KeyError:
                        pass

        # N = number of genes in genome
        N = total_genes
        # n   = number of genes selected by segments
        n = genes_hit_by_segments

        for annotation in annotations:
            # K = number of genes carrying annotation
            K = annotation2ngenes[annotation]
            # k = number of genes selected by segments and with annotation
            k = genes_hit_by_segments_with_annotations[annotation]

            if n == 0 or N == 0 or K == 0:
                expected = 0
                fold = 1.0
                pvalue = 1.0
            else:
                expected = float(n * K) / N
                fold = k / expected
                pvalue = scipy.stats.hypergeom.sf(k - 1, N, K, n)

            r = GENESET_RESULT._make((
                segment, annotation,
                N,
                K,
                n,
                k,
                expected,
                fold,
                pvalue,
                1.0))

            results.append(r)

    IO.outputResults(results,
                     options,
                     GENESET_RESULT._fields,
                     description_header,
                     description_width,
                     descriptions)

    E.Stop()
コード例 #5
0
def main(argv=None):
    """script main.

    parses command line options in sys.argv, unless *argv* is given.
    """

    if not argv:
        argv = sys.argv

    parser = gat.buildParser(usage=globals()["__doc__"])

    # add common options (-h/--help, ...) and parse command line
    (options, args) = E.Start(parser, argv=argv, add_output_options=True)

    ##################################################
    description_header, descriptions, description_width = IO.readDescriptions(
        options)

    ##################################################
    size_pos, size_segment = SegmentList.getSegmentSize()
    E.debug("sizes: pos=%i segment=%i, max_coord=%i" %
            (size_pos, size_segment, 2**(8 * size_pos)))

    ##################################################
    # set default counter
    if not options.counters:
        options.counters.append("nucleotide-overlap")

    ##################################################
    if options.output_tables_pattern is not None:
        if "%s" not in options.output_tables_pattern:
            raise ValueError(
                "output_tables_pattern should contain at least one '%s'")

    if options.output_samples_pattern is not None:
        if "%s" not in options.output_samples_pattern:
            raise ValueError(
                "output_samples_pattern should contain at least one '%s'")

    if options.output_counts_pattern is not None:
        if "%s" not in options.output_counts_pattern:
            raise ValueError(
                "output_counts_pattern should contain at least one '%s'")

    if options.random_seed is not None:
        # initialize python random number generator
        random.seed(options.random_seed)
        # initialize numpy random number generator
        numpy.random.seed(options.random_seed)

    ##################################################
    # read fold changes that results should be compared with
    if options.null != "default":
        if not os.path.exists(options.null):
            raise OSError("file %s not found" % options.null)
        E.info("reading reference results from %s" % options.null)
        options.reference = IO.readAnnotatorResults(options.null)
    else:
        options.reference = None

    if options.input_filename_counts:
        # use pre-computed counts
        annotator_results = Engine.fromCounts(options.input_filename_counts)

    elif options.input_filename_results:
        # use previous results (re-computes fdr)
        E.info("reading gat results from %s" % options.input_filename_results)
        annotator_results = IO.readAnnotatorResults(
            options.input_filename_results)

    else:
        # do full gat analysis
        annotator_results = fromSegments(options, args)

    ##################################################
    if options.pvalue_method != "empirical":
        E.info("updating pvalues to %s" % options.pvalue_method)
        Engine.updatePValues(annotator_results, options.pvalue_method)

    ##################################################
    # output
    IO.outputResults(annotator_results, options,
                     Engine.AnnotatorResultExtended.headers,
                     description_header, description_width, descriptions)

    IO.plotResults(annotator_results, options)

    # write footer and output benchmark information.
    E.Stop()