def main(args): # load and preprocess dataset data = load_data(args) features = torch.FloatTensor(data.features) labels = torch.LongTensor(data.labels) train_mask = torch.ByteTensor(data.train_mask) val_mask = torch.ByteTensor(data.val_mask) test_mask = torch.ByteTensor(data.test_mask) num_feats = features.shape[1] n_classes = data.num_labels n_edges = data.graph.number_of_edges() print("""----Data statistics------' #Edges %d #Classes %d #Train samples %d #Val samples %d #Test samples %d""" % (n_edges, n_classes, train_mask.sum().item(), val_mask.sum().item(), test_mask.sum().item())) if args.gpu < 0: cuda = False else: cuda = True torch.cuda.set_device(args.gpu) features = features.cuda() labels = labels.cuda() train_mask = train_mask.cuda() val_mask = val_mask.cuda() test_mask = test_mask.cuda() g = data.graph # add self loop g.remove_edges_from(g.selfloop_edges()) g = DGLGraph(g) g.add_edges(g.nodes(), g.nodes()) n_edges = g.number_of_edges() # create model heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads] model = GAT(g, args.num_layers, num_feats, args.num_hidden, n_classes, heads, F.elu, args.in_drop, args.attn_drop, args.negative_slope, args.residual) print(model) stopper = EarlyStopping(patience=100) if cuda: model.cuda() loss_fcn = torch.nn.CrossEntropyLoss() # use optimizer optimizer = torch.optim.Adam( model.parameters(), lr=args.lr, weight_decay=args.weight_decay) # initialize graph dur = [] for epoch in range(args.epochs): model.train() if epoch >= 3: t0 = time.time() # forward logits = model(features) loss = loss_fcn(logits[train_mask], labels[train_mask]) optimizer.zero_grad() loss.backward() optimizer.step() if epoch >= 3: dur.append(time.time() - t0) train_acc = accuracy(logits[train_mask], labels[train_mask]) if args.fastmode: val_acc = accuracy(logits[val_mask], labels[val_mask]) else: val_acc = evaluate(model, features, labels, val_mask) if stopper.step(val_acc, model): break print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | TrainAcc {:.4f} |" " ValAcc {:.4f} | ETputs(KTEPS) {:.2f}". format(epoch, np.mean(dur), loss.item(), train_acc, val_acc, n_edges / np.mean(dur) / 1000)) print() model.load_state_dict(torch.load('es_checkpoint.pt')) acc = evaluate(model, features, labels, test_mask) print("Test Accuracy {:.4f}".format(acc))
def main(args): # load and preprocess dataset g, graph_labels = load_graphs( '/yushi/dataset/Amazon2M/Amazon2M_dglgraph.bin') assert len(g) == 1 g = g[0] data = g.ndata features = torch.FloatTensor(data['feat']) labels = torch.LongTensor(data['label']) if hasattr(torch, 'BoolTensor'): train_mask = data['train_mask'].bool() val_mask = data['val_mask'].bool() test_mask = data['test_mask'].bool() num_feats = features.shape[1] n_classes = 47 n_edges = g.number_of_edges() print("""----Data statistics------' #Edges %d #Classes %d #Train samples %d #Val samples %d #Test samples %d""" % (n_edges, n_classes, train_mask.int().sum().item(), val_mask.int().sum().item(), test_mask.int().sum().item())) if args.gpu < 0: cuda = False else: cuda = True torch.cuda.set_device(args.gpu) features = features.cuda() labels = labels.cuda() train_mask = train_mask.cuda() val_mask = val_mask.cuda() test_mask = test_mask.cuda() # add self loop g = add_self_loop(g) # g.remove_edges_from(nx.selfloop_edges(g)) # g = DGLGraph(g) # g.add_edges(g.nodes(), g.nodes()) n_edges = g.number_of_edges() # create model heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads] model = GAT(g, args.num_layers, num_feats, args.num_hidden, n_classes, heads, F.elu, args.in_drop, args.attn_drop, args.negative_slope, args.residual) print(model) if args.early_stop: stopper = EarlyStopping(patience=100) if cuda: model.cuda() loss_fcn = torch.nn.CrossEntropyLoss() # use optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) # initialize graph dur = [] start = time.time() for epoch in range(args.epochs): model.train() if epoch >= 3: t0 = time.time() # forward logits = model(features) loss = loss_fcn(logits[train_mask], labels[train_mask]) optimizer.zero_grad() loss.backward() optimizer.step() if epoch >= 3: dur.append(time.time() - t0) train_acc = accuracy(logits[train_mask], labels[train_mask]) if args.fastmode: val_acc = accuracy(logits[val_mask], labels[val_mask]) else: val_acc = evaluate(model, features, labels, val_mask) if args.early_stop: if stopper.step(val_acc, model): break print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | TrainAcc {:.4f} |" " ValAcc {:.4f} | ETputs(KTEPS) {:.2f}".format( epoch, np.mean(dur), loss.item(), train_acc, val_acc, n_edges / np.mean(dur) / 1000)) print() if args.early_stop: model.load_state_dict(torch.load('es_checkpoint.pt')) acc = evaluate(model, features, labels, test_mask) print("Test Accuracy {:.4f}".format(acc)) print(f"Time Consuming {np.sum(dur)}, Overall time {time.time() - start}")
def main(args): # load and preprocess dataset if args.dataset == 'cora': data = CoraGraphDataset() elif args.dataset == 'citeseer': data = CiteseerGraphDataset() elif args.dataset == 'pubmed': data = PubmedGraphDataset() else: raise ValueError('Unknown dataset: {}'.format(args.dataset)) g = data[0] if args.gpu < 0: cuda = False else: cuda = True g = g.int().to(args.gpu) features = g.ndata['feat'] labels = g.ndata['label'] train_mask = g.ndata['train_mask'] val_mask = g.ndata['val_mask'] test_mask = g.ndata['test_mask'] num_feats = features.shape[1] n_classes = data.num_labels n_edges = data.graph.number_of_edges() print("""----Data statistics------' #Edges %d #Classes %d #Train samples %d #Val samples %d #Test samples %d""" % (n_edges, n_classes, train_mask.int().sum().item(), val_mask.int().sum().item(), test_mask.int().sum().item())) # add self loop g = dgl.remove_self_loop(g) g = dgl.add_self_loop(g) n_edges = g.number_of_edges() # create model heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads] model = GAT(g, args.num_layers, num_feats, args.num_hidden, n_classes, heads, F.elu, args.in_drop, args.attn_drop, args.negative_slope, args.residual) print(model) if args.early_stop: stopper = EarlyStopping(patience=100) if cuda: model.cuda() loss_fcn = torch.nn.CrossEntropyLoss() # use optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) # initialize graph dur = [] for epoch in range(args.epochs): model.train() if epoch >= 3: t0 = time.time() # forward logits = model(features) loss = loss_fcn(logits[train_mask], labels[train_mask]) optimizer.zero_grad() loss.backward() optimizer.step() if epoch >= 3: dur.append(time.time() - t0) train_acc = accuracy(logits[train_mask], labels[train_mask]) if args.fastmode: val_acc = accuracy(logits[val_mask], labels[val_mask]) else: val_acc = evaluate(model, features, labels, val_mask) if args.early_stop: if stopper.step(val_acc, model): break print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | TrainAcc {:.4f} |" " ValAcc {:.4f} | ETputs(KTEPS) {:.2f}".format( epoch, np.mean(dur), loss.item(), train_acc, val_acc, n_edges / np.mean(dur) / 1000)) print() if args.early_stop: model.load_state_dict(torch.load('es_checkpoint.pt')) acc = evaluate(model, features, labels, test_mask) print("Test Accuracy {:.4f}".format(acc))
def main(args): if args.gpu < 0: device = torch.device("cpu") else: device = torch.device("cuda:" + str(args.gpu)) batch_size = args.batch_size cur_step = 0 patience = args.patience best_score = -1 best_loss = 10000 # define loss function loss_fcn = torch.nn.BCEWithLogitsLoss() # create the dataset train_dataset = LegacyPPIDataset(mode='train') valid_dataset = LegacyPPIDataset(mode='valid') test_dataset = LegacyPPIDataset(mode='test') train_dataloader = DataLoader(train_dataset, batch_size=batch_size, collate_fn=collate) valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, collate_fn=collate) test_dataloader = DataLoader(test_dataset, batch_size=batch_size, collate_fn=collate) n_classes = train_dataset.labels.shape[1] num_feats = train_dataset.features.shape[1] g = train_dataset.graph heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads] # define the model model = GAT(g, args.num_layers, num_feats, args.num_hidden, n_classes, heads, F.elu, args.in_drop, args.attn_drop, args.alpha, args.residual) # define the optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) model = model.to(device) for epoch in range(args.epochs): model.train() loss_list = [] for batch, data in enumerate(train_dataloader): subgraph, feats, labels = data feats = feats.to(device) labels = labels.to(device) model.g = subgraph for layer in model.gat_layers: layer.g = subgraph logits = model(feats.float()) loss = loss_fcn(logits, labels.float()) optimizer.zero_grad() loss.backward() optimizer.step() loss_list.append(loss.item()) loss_data = np.array(loss_list).mean() print("Epoch {:05d} | Loss: {:.4f}".format(epoch + 1, loss_data)) if epoch % 5 == 0: score_list = [] val_loss_list = [] for batch, valid_data in enumerate(valid_dataloader): subgraph, feats, labels = valid_data feats = feats.to(device) labels = labels.to(device) score, val_loss = evaluate(feats.float(), model, subgraph, labels.float(), loss_fcn) score_list.append(score) val_loss_list.append(val_loss) mean_score = np.array(score_list).mean() mean_val_loss = np.array(val_loss_list).mean() print("F1-Score: {:.4f} ".format(mean_score)) # early stop if mean_score > best_score or best_loss > mean_val_loss: if mean_score > best_score and best_loss > mean_val_loss: val_early_loss = mean_val_loss val_early_score = mean_score best_score = np.max((mean_score, best_score)) best_loss = np.min((best_loss, mean_val_loss)) cur_step = 0 else: cur_step += 1 if cur_step == patience: break test_score_list = [] for batch, test_data in enumerate(test_dataloader): subgraph, feats, labels = test_data feats = feats.to(device) labels = labels.to(device) test_score_list.append( evaluate(feats, model, subgraph, labels.float(), loss_fcn)[0]) print("F1-Score: {:.4f}".format(np.array(test_score_list).mean()))
def main(args): # load and preprocess dataset g, features, labels, n_classes, train_mask, val_mask, test_mask, lp_dict, ind_features, ind_labels = load_reg_data(args) num_feats = features.shape[1] n_edges = g.number_of_edges() print("""----Data statistics------' #use cuda: %d #Edges %d #Classes %d #Train samples %d #Val samples %d #Test samples %d""" % (args.gpu, n_edges, n_classes, train_mask.int().sum().item(), val_mask.int().sum().item(), test_mask.int().sum().item())) if args.gpu < 0: cuda = False else: cuda = True torch.cuda.set_device(args.gpu) features = features.cuda() ind_features = ind_features.cuda() labels = labels.cuda() ind_labels = ind_labels.cuda() train_mask = train_mask.cuda() val_mask = val_mask.cuda() test_mask = test_mask.cuda() # create model heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads] model = GAT(g, args.num_layers, num_feats, args.num_hidden, n_classes, heads, F.elu, args.in_drop, args.attn_drop, args.negative_slope, args.residual, args.bias) print(model) if args.early_stop: stopper = EarlyStopping(patience=100) if cuda: model.cuda() # use optimizer optimizer = torch.optim.Adam( model.parameters(), lr=args.lr, weight_decay=args.weight_decay) # initialize graph dur = [] for epoch in range(args.epochs): model.train() if epoch >= 3: t0 = time.time() # forward pred = model(features) loss = loss_fcn(pred[train_mask], labels[train_mask]) optimizer.zero_grad() loss.backward() optimizer.step() if epoch >= 3: dur.append(time.time() - t0) train_r2 = compute_r2(pred[train_mask], labels[train_mask]) if args.fastmode: val_r2 = compute_r2(pred[val_mask], labels[val_mask]) else: val_r2 = evaluate(model, features, labels, val_mask) if args.early_stop: if stopper.step(val_r2, model): break if epoch > 3: print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | TrainR2 {:.4f} |" " Val R2 {:.4f} | ETputs(KTEPS) {:.2f}". format(epoch, np.mean(dur), loss.item(), train_r2, val_r2, n_edges / np.mean(dur) / 1000)) print() if args.early_stop: model.load_state_dict(torch.load('es_checkpoint.pt')) evaluate_test(model, features, labels, test_mask, lp_dict, meta="2012") evaluate_test(model, ind_features, ind_labels, test_mask, lp_dict, meta="2016")
def main(args): # load and preprocess dataset if args.dataset == 'reddit': data = RedditDataset() elif args.dataset in ['photo', "computer"]: data = MsDataset(args) else: data = load_data(args) features = torch.FloatTensor(data.features) labels = torch.LongTensor(data.labels) train_mask = torch.ByteTensor(data.train_mask) val_mask = torch.ByteTensor(data.val_mask) test_mask = torch.ByteTensor(data.test_mask) num_feats = features.shape[1] n_classes = data.num_labels n_edges = data.graph.number_of_edges() current_time = time.strftime('%d_%H:%M:%S', localtime()) writer = SummaryWriter(log_dir='runs/' + current_time + '_' + args.sess, flush_secs=30) print("""----Data statistics------' #Edges %d #Classes %d #Train samples %d #Val samples %d #Test samples %d""" % (n_edges, n_classes, train_mask.sum().item(), val_mask.sum().item(), test_mask.sum().item())) if args.gpu < 0: cuda = False else: cuda = True torch.cuda.set_device(args.gpu) features = features.cuda() labels = labels.cuda() train_mask = train_mask.bool().cuda() val_mask = val_mask.bool().cuda() test_mask = test_mask.bool().cuda() g = data.graph # add self loop if args.dataset != 'reddit': g.remove_edges_from(nx.selfloop_edges(g)) g = DGLGraph(g) g.add_edges(g.nodes(), g.nodes()) n_edges = g.number_of_edges() print('edge number %d'%(n_edges)) # create model heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads] model = GAT(g, args.num_layers, num_feats, args.num_hidden, n_classes, heads, F.elu, args.idrop, args.adrop, args.alpha, args.bias, args.residual, args.l0) print(model) if args.early_stop: stopper = EarlyStopping(patience=150) if cuda: model.cuda() loss_fcn = torch.nn.CrossEntropyLoss() # use optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) dur = [] time_used = 0 for epoch in range(args.epochs): model.train() if epoch >= 3: t0 = time.time() # forward logits = model(features) loss = loss_fcn(logits[train_mask], labels[train_mask]) loss_l0 = args.loss_l0*( model.gat_layers[0].loss) optimizer.zero_grad() (loss + loss_l0).backward() optimizer.step() if epoch >= 3: dur.append(time.time() - t0) train_acc = accuracy(logits[train_mask], labels[train_mask]) writer.add_scalar('edge_num/0', model.gat_layers[0].num, epoch) if args.fastmode: val_acc, loss = accuracy(logits[val_mask], labels[val_mask], loss_fcn) else: val_acc,_ = evaluate(model, features, labels, val_mask, loss_fcn) if args.early_stop: if stopper.step(val_acc, model): break print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | TrainAcc {:.4f} |" " ValAcc {:.4f} | ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.item(), train_acc, val_acc, n_edges / np.mean(dur) / 1000)) writer.add_scalar('loss', loss.item(), epoch) writer.add_scalar('f1/train_f1_mic', train_acc, epoch) writer.add_scalar('f1/test_f1_mic', val_acc, epoch) writer.add_scalar('time/time', time_used, epoch) writer.close() if args.early_stop: model.load_state_dict(torch.load('es_checkpoint.pt')) acc, _ = evaluate(model,features, labels, test_mask, loss_fcn) print("Test Accuracy {:.4f}".format(acc))
def train(args): data_dir = args.data_dir edge_dir = args.edge_dir gpu = args.gpu node_f_dim = 23 edge_f_dim = 19 batch_size = args.batch_size num_classes = args.num_classes num_hidden = args.num_hidden num_heads = args.num_heads num_out_heads = args.num_out_heads num_layers = args.num_layers residual = args.residual in_drop = args.in_drop attn_drop = args.attn_drop optim_type = args.optim_type momentum = args.momentum lr = args.lr patience = args.patience weight_decay = args.weight_decay alpha = args.alpha epochs = args.epochs smooth_eps = args.smooth_eps temperature = args.temperature edge_feature_attn = args.edge_feature_attn if gpu >= 0: device = th.device("cuda") else: device = th.device("cpu") trainset = StrokeDataset(data_dir, edge_dir, "train", num_classes) validset = StrokeDataset(data_dir, edge_dir, "valid", num_classes) testset = StrokeDataset(data_dir, edge_dir, "test", num_classes) train_loader = DataLoader(trainset, batch_size=batch_size, shuffle=True, collate_fn=collate(device)) valid_loader = DataLoader(validset, batch_size=64, shuffle=False, collate_fn=collate(device)) test_loader = DataLoader(testset, batch_size=64, shuffle=False, collate_fn=collate(device)) heads = ([num_heads] * num_layers) + [num_out_heads] model = GAT(num_layers, node_f_dim, edge_f_dim, num_hidden, num_classes, heads, nn.LeakyReLU(alpha), in_drop, attn_drop, alpha, temperature, edge_feature_attn, residual).to(device) # loss_func = nn.CrossEntropyLoss() loss_func = CrossEntropyLoss(smooth_eps=smooth_eps) if optim_type == 'adam': optimizer = optim.Adam(model.parameters(), lr=lr) elif optim_type == 'sgd': optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'max', patience=patience) epoch_losses = [] best_valid_acc = 0 best_test_acc = 0 best_round = 0 start = time.time() for epoch in range(epochs): epoch_loss = 0 epoch_start = time.time() for it, (fg, lg) in enumerate(train_loader): logits = model(fg) labels = lg.ndata['y'] loss = loss_func(logits, labels) optimizer.zero_grad() loss.backward() optimizer.step() epoch_loss += loss.detach().item() epoch_loss /= (it + 1) epoch_duration = time.time() - epoch_start print('Epoch: {:3d}, loss: {:4f}, speed: {:.2f}doc/s'.format( epoch, epoch_loss, len(trainset) / epoch_duration)) epoch_losses.append(epoch_loss) train_acc, _ = evaluate(model, train_loader, num_classes, "train") valid_acc, _ = evaluate(model, valid_loader, num_classes, "valid") if valid_acc > best_valid_acc: best_valid_acc = valid_acc test_acc, test_conf_mat = evaluate(model, test_loader, num_classes, "test") best_conf_mat = test_conf_mat best_round = epoch scheduler.step(valid_acc) cur_learning_rate = optimizer.param_groups[0]['lr'] print('Learning rate: {:10f}'.format(cur_learning_rate)) epoch_duration = time.time() - epoch_start if cur_learning_rate <= 1e-6: break print("Best round: %d" % best_round) print_result(best_conf_mat) duration = time.time() - start print("Time cost: {:.4f}s".format(duration)) return test_acc
def train(args): # load and preprocess dataset #data = load_data(args) #data = CoraFull() #data = Coauthor('cs') #FIRST, CHECK DATASET path = './dataset/' + str(args.dataset) + '/' ''' edges = np.loadtxt(path + 'edges.txt') edges = edges.astype(int) features = np.loadtxt(path + 'features.txt') train_mask = np.loadtxt(path + 'train_mask.txt') train_mask = train_mask.astype(int) labels = np.loadtxt(path + 'labels.txt') labels = labels.astype(int) ''' edges = np.load(path + 'edges.npy') features = np.load(path + 'features.npy') train_mask = np.load(path + 'train_mask.npy') labels = np.load(path + 'labels.npy') num_edges = edges.shape[0] num_nodes = features.shape[0] num_feats = features.shape[1] n_classes = max(labels) - min(labels) + 1 assert train_mask.shape[0] == num_nodes print('dataset {}'.format(args.dataset)) print('# of edges : {}'.format(num_edges)) print('# of nodes : {}'.format(num_nodes)) print('# of features : {}'.format(num_feats)) features = torch.FloatTensor(features) labels = torch.LongTensor(labels) if hasattr(torch, 'BoolTensor'): train_mask = torch.BoolTensor(train_mask) else: train_mask = torch.ByteTensor(train_mask) if args.gpu < 0: cuda = False else: cuda = True torch.cuda.set_device(args.gpu) features = features.cuda() labels = labels.cuda() train_mask = train_mask.cuda() u = edges[:, 0] v = edges[:, 1] #initialize a DGL graph g = DGLGraph() g.add_nodes(num_nodes) g.add_edges(u, v) # add self loop if isinstance(g, nx.classes.digraph.DiGraph): g.remove_edges_from(nx.selfloop_edges(g)) g = DGLGraph(g) g.add_edges(g.nodes(), g.nodes()) elif isinstance(g, DGLGraph): g = transform.add_self_loop(g) n_edges = g.number_of_edges() # create model heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads] model = GAT(g, args.num_layers, num_feats, args.num_hidden, n_classes, heads, F.elu, args.in_drop, args.attn_drop, args.negative_slope, args.residual) if args.early_stop: stopper = EarlyStopping(patience=100) if cuda: model.cuda() loss_fcn = torch.nn.CrossEntropyLoss() # use optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) # initialize graph dur = [] record_time = 0 avg_run_time = 0 Used_memory = 0 for epoch in range(args.num_epochs): #print('epoch = ', epoch) #print('mem0 = {}'.format(mem0)) torch.cuda.synchronize() tf = time.time() model.train() if epoch >= 3: t0 = time.time() # forward logits = model(features) loss = loss_fcn(logits[train_mask], labels[train_mask]) now_mem = torch.cuda.max_memory_allocated(0) print('now_mem : ', now_mem) Used_memory = max(now_mem, Used_memory) tf1 = time.time() optimizer.zero_grad() torch.cuda.synchronize() t1 = time.time() loss.backward() torch.cuda.synchronize() optimizer.step() t2 = time.time() run_time_this_epoch = t2 - tf if epoch >= 3: dur.append(time.time() - t0) record_time += 1 avg_run_time += run_time_this_epoch train_acc = accuracy(logits[train_mask], labels[train_mask]) #log for each step print( 'Epoch {:05d} | Time(s) {:.4f} | train_acc {:.6f} | Used_Memory {:.6f} mb' .format(epoch, run_time_this_epoch, train_acc, (now_mem * 1.0 / (1024**2)))) ''' if args.fastmode: val_acc = accuracy(logits[val_mask], labels[val_mask]) else: val_acc = evaluate(model, features, labels, val_mask) if args.early_stop: if stopper.step(val_acc, model): break print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | TrainAcc {:.4f} |" " ValAcc /{:.4f} | ETputs(KTEPS) {:.2f}". format(epoch, np.mean(dur), loss.item(), train_acc, val_acc, n_edges / np.mean(dur) / 1000)) ''' if args.early_stop: model.load_state_dict(torch.load('es_checkpoint.pt')) #OUTPUT we need avg_run_time = avg_run_time * 1. / record_time Used_memory /= (1024**3) print('^^^{:6f}^^^{:6f}'.format(Used_memory, avg_run_time))
def main(args): if args.gpu < 0: device = torch.device("cpu") else: device = torch.device("cuda:" + str(args.gpu)) writer = SummaryWriter() batch_size = args.batch_size # cur_step = 0 # patience = args.patience # best_score = -1 # best_loss = 10000 # define loss function loss_fcn = torch.nn.BCEWithLogitsLoss() # create the dataset train_dataset = LegacyPPIDataset(mode='train') valid_dataset = LegacyPPIDataset(mode='valid') test_dataset = LegacyPPIDataset(mode='test') train_dataloader = DataLoader(train_dataset, batch_size=batch_size, collate_fn=collate) valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, collate_fn=collate) test_dataloader = DataLoader(test_dataset, batch_size=batch_size, collate_fn=collate) n_classes = train_dataset.labels.shape[1] num_feats = train_dataset.features.shape[1] g = train_dataset.graph heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads] # define the model model = GAT(g, args.num_layers, num_feats, args.num_hidden, n_classes, heads, F.elu, args.in_drop, args.attn_drop, args.alpha, args.bias, args.residual, args.l0) print(model) # define the optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) model = model.to(device) best_epoch = 0 dur = [] acc = [] for epoch in range(args.epochs): num = 0 model.train() if epoch % 5 == 0: t0 = time.time() loss_list = [] for batch, data in enumerate(train_dataloader): subgraph, feats, labels = data feats = feats.to(device) labels = labels.to(device) model.g = subgraph for layer in model.gat_layers: layer.g = subgraph logits = model(feats.float()) loss = loss_fcn(logits, labels.float()) loss_l0 = args.loss_l0 * (model.gat_layers[0].loss) optimizer.zero_grad() (loss + loss_l0).backward() optimizer.step() loss_list.append(loss.item()) num += model.gat_layers[0].num if epoch % 5 == 0: dur.append(time.time() - t0) loss_data = np.array(loss_list).mean() print("Epoch {:05d} | Loss: {:.4f}".format(epoch + 1, loss_data)) writer.add_scalar('edge_num/0', num, epoch) if epoch % 5 == 0: score_list = [] val_loss_list = [] for batch, valid_data in enumerate(valid_dataloader): subgraph, feats, labels = valid_data feats = feats.to(device) labels = labels.to(device) score, val_loss = evaluate(feats.float(), model, subgraph, labels.float(), loss_fcn) score_list.append(score) val_loss_list.append(val_loss) mean_score = np.array(score_list).mean() mean_val_loss = np.array(val_loss_list).mean() print("val F1-Score: {:.4f} ".format(mean_score)) writer.add_scalar('loss', mean_val_loss, epoch) writer.add_scalar('f1/test_f1_mic', mean_score, epoch) acc.append(mean_score) # # early stop # if mean_score > best_score or best_loss > mean_val_loss: # if mean_score > best_score and best_loss > mean_val_loss: # val_early_loss = mean_val_loss # val_early_score = mean_score # torch.save(model.state_dict(), '{}.pkl'.format('save_rand')) # best_epoch = epoch # # best_score = np.max((mean_score, best_score)) # best_loss = np.min((best_loss, mean_val_loss)) # cur_step = 0 # else: # cur_step += 1 # if cur_step == patience: # break test_score_list = [] for batch, test_data in enumerate(test_dataloader): subgraph, feats, labels = test_data feats = feats.to(device) labels = labels.to(device) test_score_list.append( evaluate(feats, model, subgraph, labels.float(), loss_fcn)[0]) acc = np.array(test_score_list).mean() print("test F1-Score: {:.4f}".format(acc)) writer.close()
def main(args): if args.gpu < 0: device = torch.device("cpu") else: device = torch.device("cuda:" + str(args.gpu)) batch_size = args.batch_size cur_step = 0 patience = args.patience best_score = -1 best_loss = 10000 # define loss function loss_fcn = torch.nn.BCEWithLogitsLoss() # create the dataset # train_dataset = amino_acid_dataset.LegacyAcidDataset(mode='train') # valid_dataset = amino_acid_dataset.LegacyAcidDataset(mode='valid') test_dataset = amino_acid_dataset_test.LegacyAcidDataset(mode='test') # train_dataloader = DataLoader(train_dataset, batch_size=batch_size, collate_fn=collate) # valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, collate_fn=collate) test_dataloader = DataLoader(test_dataset, batch_size=batch_size, collate_fn=collate) n_classes = test_dataset.labels.shape[1] num_feats = test_dataset.features.shape[1] g = test_dataset.graph heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads] # define the model model = GAT(g, args.num_layers, num_feats, args.num_hidden, n_classes, heads, F.elu, args.in_drop, args.attn_drop, args.alpha, args.residual) # define the optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) model = model.to(device) # for epoch in range(args.epochs): # model.train() # loss_list = [] # for batch, data in enumerate(train_dataloader): # subgraph, feats, labels = data # # print(feats) # feats = feats.to(device) # labels = labels.to(device) # model.g = subgraph # for layer in model.gat_layers: # layer.g = subgraph # logits = model(feats.float()) # # a = feats.float() # # print(a) # loss = loss_fcn(logits, labels.float()) # optimizer.zero_grad() # loss.backward() # optimizer.step() # loss_list.append(loss.item()) # loss_data = np.array(loss_list).mean() # print("Epoch {:05d} | Loss: {:.4f}".format(epoch + 1, loss_data)) # if epoch % 5 == 0: # score_list = [] # val_loss_list = [] # for batch, valid_data in enumerate(valid_dataloader): # subgraph, feats, labels = valid_data # feats = feats.to(device) # labels = labels.to(device) # score, val_loss = evaluate(feats.float(), model, subgraph, labels.float(), loss_fcn) # score_list.append(score) # val_loss_list.append(val_loss) # mean_score = np.array(score_list).mean() # mean_val_loss = np.array(val_loss_list).mean() # print("F1-Score: {:.4f} ".format(mean_score)) # # early stop # if mean_score > best_score or best_loss > mean_val_loss: # if mean_score > best_score and best_loss > mean_val_loss: # val_early_loss = mean_val_loss # val_early_score = mean_score # best_score = np.max((mean_score, best_score)) # best_loss = np.min((best_loss, mean_val_loss)) # cur_step = 0 # else: # cur_step += 1 # if cur_step == patience: # break # load model model.load_state_dict(torch.load("/home/a503tongxueheng/DGL_GAT/ppi.pt")) model.eval() test_score_list = [] for batch, test_data in enumerate(test_dataloader): subgraph, feats, labels = test_data feats = feats.to(device) labels = labels.to(device) test_score_list.append( evaluate(feats, model, subgraph, labels.float(), loss_fcn)[0]) print("F1-Score: {:.4f}".format(np.array(test_score_list).mean()))
def main(training_file, dev_file, test_file, graph_type=None, net=None, epochs=None, patience=None, grid_width=None, image_width=None, batch_size=None, num_hidden=None, heads=None, gnn_layers=None, cnn_layers=None, nonlinearity=None, residual=None, lr=None, weight_decay=None, in_drop=None, alpha=None, attn_drop=None, cuda=None, fw='dgl', index=None, previous_model=None): global stop_training if nonlinearity == 'relu': nonlinearity = F.relu elif nonlinearity == 'elu': nonlinearity = F.elu loss_fcn = torch.nn.MSELoss() #(reduction='sum') print('=========================') print('HEADS', heads) #print('OUT_HEADS', num_out_heads) print('GNN LAYERS', gnn_layers) print('CNN LAYERS', cnn_layers) print('HIDDEN', num_hidden) print('RESIDUAL', residual) print('inDROP', in_drop) print('atDROP', attn_drop) print('LR', lr) print('DECAY', weight_decay) print('ALPHA', alpha) print('BATCH', batch_size) print('GRAPH_ALT', graph_type) print('ARCHITECTURE', net) print('=========================') # create the dataset time_dataset_a = time.time() print('Loading training set...') train_dataset = socnavImg.SocNavDataset(training_file, mode='train') print('Loading dev set...') valid_dataset = socnavImg.SocNavDataset(dev_file, mode='valid') print('Loading test set...') test_dataset = socnavImg.SocNavDataset(test_file, mode='test') print('Done loading files') train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate) valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate) test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate) time_dataset_b = time.time() for _ in range(5): print(f'TIME {time_dataset_b-time_dataset_a}') num_rels = len(socnavImg.get_relations()) cur_step = 0 best_loss = -1 n_classes = num_hidden[-1] print('Number of classes: {}'.format(n_classes)) num_feats = train_dataset.graphs[0].ndata['h'].shape[1] print('Number of features: {}'.format(num_feats)) g = dgl.batch(train_dataset.graphs) #heads = ([num_heads] * gnn_layers) + [num_out_heads] # define the model if fw == 'dgl': if net in ['gat']: model = GAT( g, # graph gnn_layers, # gnn_layers num_feats, # in_dimension num_hidden, # num_hidden 1, grid_width, # grid_width heads, # head nonlinearity, # activation in_drop, # feat_drop attn_drop, # attn_drop alpha, # negative_slope residual, # residual cnn_layers # cnn_layers ) elif net in ['gatmc']: model = GATMC( g, # graph gnn_layers, # gnn_layers num_feats, # in_dimension num_hidden, # num_hidden grid_width, # grid_width image_width, # image_width heads, # head nonlinearity, # activation in_drop, # feat_drop attn_drop, # attn_drop alpha, # negative_slope residual, # residual cnn_layers # cnn_layers ) elif net in ['rgcn']: print( f'CREATING RGCN(GRAPH, gnn_layers:{gnn_layers}, cnn_layers:{cnn_layers}, num_feats:{num_feats}, num_hidden:{num_hidden}, grid_with:{grid_width}, image_width:{image_width}, num_rels:{num_rels}, non-linearity:{nonlinearity}, drop:{in_drop}, num_bases:{num_rels})' ) model = RGCN(g, gnn_layers, cnn_layers, num_feats, num_hidden, grid_width, image_width, num_rels, nonlinearity, in_drop, num_bases=num_rels) else: print('No valid GNN model specified') sys.exit(0) # define the optimizer optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay) # for name, param in model.named_parameters(): # if param.requires_grad: # print(name, param.data.shape) if previous_model is not None: model.load_state_dict(torch.load(previous_model, map_location=device)) model = model.to(device) for epoch in range(epochs): if stop_training: print("Stopping training. Please wait.") break model.train() loss_list = [] for batch, data in enumerate(train_dataloader): subgraph, labels = data subgraph.set_n_initializer(dgl.init.zero_initializer) subgraph.set_e_initializer(dgl.init.zero_initializer) feats = subgraph.ndata['h'].to(device) labels = labels.to(device) if fw == 'dgl': model.g = subgraph for layer in model.layers: layer.g = subgraph if net in ['rgcn']: logits = model( feats.float(), subgraph.edata['rel_type'].squeeze().to(device)) else: logits = model(feats.float()) else: print('Only DGL is supported at the moment here.') sys.exit(1) if net in ['pgat', 'pgcn']: data = Data(x=feats.float(), edge_index=torch.stack( subgraph.edges()).to(device)) else: data = Data( x=feats.float(), edge_index=torch.stack(subgraph.edges()).to(device), edge_type=subgraph.edata['rel_type'].squeeze().to( device)) logits = model(data, subgraph) a = logits ## [getMaskForBatch(subgraph)].flatten() # print('AA', a.shape) # print(a) a = a.flatten() #print('labels', labels.shape) b = labels.float() # print('b') # print(b) b = b.flatten() # print('BB', b.shape) ad = a.to(device) bd = b.to(device) # print(ad.shape, ad.dtype, bd.shape, bd.dtype) loss = loss_fcn(ad, bd) optimizer.zero_grad() a = list(model.parameters())[0].clone() loss.backward() optimizer.step() b = list(model.parameters())[0].clone() not_learning = torch.equal(a.data, b.data) if not_learning: import sys print('Not learning') # sys.exit(1) else: pass # print('Diff: ', (a.data-b.data).sum()) # print(loss.item()) loss_list.append(loss.item()) loss_data = np.array(loss_list).mean() print('Loss: {}'.format(loss_data)) if epoch % 5 == 0: if epoch % 5 == 0: print("Epoch {:05d} | Loss: {:.4f} | Patience: {} | ".format( epoch, loss_data, cur_step), end='') score_list = [] val_loss_list = [] for batch, valid_data in enumerate(valid_dataloader): subgraph, labels = valid_data subgraph.set_n_initializer(dgl.init.zero_initializer) subgraph.set_e_initializer(dgl.init.zero_initializer) feats = subgraph.ndata['h'].to(device) labels = labels.to(device) score, val_loss = evaluate(feats.float(), model, subgraph, labels.float(), loss_fcn, fw, net) score_list.append(score) val_loss_list.append(val_loss) mean_score = np.array(score_list).mean() mean_val_loss = np.array(val_loss_list).mean() if epoch % 5 == 0: print("Score: {:.4f} MEAN: {:.4f} BEST: {:.4f}".format( mean_score, mean_val_loss, best_loss)) # early stop if best_loss > mean_val_loss or best_loss < 0: print('Saving...') directory = str(index).zfill(5) os.system('mkdir ' + directory) best_loss = mean_val_loss # Save the model torch.save(model.state_dict(), directory + '/SNGNN2D.tch') params = { 'loss': best_loss, 'net': net, #str(type(net)), 'fw': fw, 'gnn_layers': gnn_layers, 'cnn_layers': cnn_layers, 'num_feats': num_feats, 'num_hidden': num_hidden, 'graph_type': graph_type, 'n_classes': n_classes, 'heads': heads, 'grid_width': grid_width, 'image_width': image_width, 'F': F.relu, 'in_drop': in_drop, 'attn_drop': attn_drop, 'alpha': alpha, 'residual': residual, 'num_rels': num_rels } pickle.dump(params, open(directory + '/SNGNN2D.prms', 'wb')) cur_step = 0 else: # print(best_loss, mean_val_loss) cur_step += 1 if cur_step >= patience: break test_score_list = [] for batch, test_data in enumerate(test_dataloader): subgraph, labels = test_data subgraph.set_n_initializer(dgl.init.zero_initializer) subgraph.set_e_initializer(dgl.init.zero_initializer) feats = subgraph.ndata['h'].to(device) labels = labels.to(device) test_score_list.append( evaluate(feats, model, subgraph, labels.float(), loss_fcn, fw, net)[1]) print("MSE for the test set {}".format(np.array(test_score_list).mean())) model.eval() return best_loss
def main(args): if args.gpu<0: device = torch.device("cpu") else: device = torch.device("cuda:" + str(args.gpu)) # batch_size = args.batch_size # cur_step = 0 # patience = args.patience # best_score = -1 # best_loss = 10000 # # define loss function # loss_fcn = torch.nn.BCEWithLogitsLoss() # create the dataset train_dataset = LegacyPPIDataset(mode='train') valid_dataset = LegacyPPIDataset(mode='valid') test_dataset = LegacyPPIDataset(mode='test') # nxg = valid_dataset.graph.to_networkx().to_undirected() # comps = [comp for comp in nx.connected_components(nxg) if len(comp)>10] # print(len(comps)) # exit() cross_valid_list = [] for i in range(5): cross_valid_list.append(list(range(4*i, 4*(i + 1)))) cross_train_dataset = copy.copy(train_dataset) valid_precision = [] valid_recall = [] valid_scores = [] test_precision = [] test_recall = [] test_scores = [] for ind, valid_list in enumerate(cross_valid_list): batch_size = args.batch_size cur_step = 0 patience = args.patience best_score = -1 best_loss = 10000 # define loss function loss_fcn = torch.nn.BCEWithLogitsLoss() train_list = [ind for ind in range(20) if ind not in valid_list] print('Train List: {}'.format(train_list)) print('Valid List: {}'.format(valid_list)) modify(train_dataset, cross_train_dataset, train_list, mode='train', offset=0) modify(valid_dataset, cross_train_dataset, valid_list, mode='valid', offset=16) train_dataloader = DataLoader(train_dataset, batch_size=batch_size, collate_fn=collate) valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, collate_fn=collate) test_dataloader = DataLoader(test_dataset, batch_size=batch_size, collate_fn=collate) n_classes = train_dataset.labels.shape[1] num_feats = train_dataset.features.shape[1] g = train_dataset.graph heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads] # define the model model = GAT(g, args.num_layers, num_feats, args.num_hidden, n_classes, heads, F.elu, args.in_drop, args.attn_drop, args.alpha, args.residual) # define the optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) model = model.to(device) for epoch in range(args.epochs): model.train() loss_list = [] for batch, data in enumerate(train_dataloader): subgraph, feats, labels = data feats = feats.to(device) labels = labels.to(device) model.g = subgraph for layer in model.gat_layers: layer.g = subgraph logits = model(feats.float()) loss = loss_fcn(logits, labels.float()) optimizer.zero_grad() loss.backward() optimizer.step() loss_list.append(loss.item()) loss_data = np.array(loss_list).mean() print("Epoch {:05d} | Loss: {:.4f}".format(epoch + 1, loss_data), end=' ') if epoch % 1 == 0: score_list = [] val_loss_list = [] for batch, valid_data in enumerate(valid_dataloader): subgraph, feats, labels = valid_data feats = feats.to(device) labels = labels.to(device) prec, recall, score, val_loss = evaluate(feats.float(), model, subgraph, labels.float(), loss_fcn) score_list.append([prec, recall, score]) val_loss_list.append(val_loss) mean_score = np.array(score_list).mean(axis=0) mean_val_loss = np.array(val_loss_list).mean() print("| Valid Precision: {:.4f} | Valid Recall: {:.4f} | Valid F1-Score: {:.4f} ".format(mean_score[0], mean_score[1], mean_score[2]), end = ' ') test_score_list = [] for batch, test_data in enumerate(test_dataloader): subgraph, feats, labels = test_data feats = feats.to(device) labels = labels.to(device) test_prec, test_rec, test_score, _ = evaluate(feats, model, subgraph, labels.float(), loss_fcn) test_score_list.append([test_prec, test_rec, test_score]) mean_test_score = np.array(test_score_list).mean(axis=0) print("| Test Precision: {:.4f} | Test Recall: {:.4f} | Test F1-Score: {:.4f}".format(mean_test_score[0], mean_test_score[1], mean_test_score[2])) if epoch == args.epochs - 1: valid_precision.append(round(mean_score[0], 4)) valid_recall.append(round(mean_score[1], 4)) valid_scores.append(round(mean_score[2], 4)) test_precision.append(round(mean_test_score[0], 4)) test_recall.append(round(mean_test_score[1], 4)) test_scores.append(round(mean_test_score[2], 4)) # early stop if mean_score[2] > best_score or best_loss > mean_val_loss: if mean_score[2] > best_score and best_loss > mean_val_loss: val_early_loss = mean_val_loss val_early_score = mean_score[2] best_score = np.max((mean_score[2], best_score)) best_loss = np.min((best_loss, mean_val_loss)) cur_step = 0 else: cur_step += 1 if cur_step == patience: valid_precision.append(round(mean_score[0], 4)) valid_recall.append(round(mean_score[1], 4)) valid_scores.append(round(mean_score[2], 4)) test_precision.append(round(mean_test_score[0], 4)) test_recall.append(round(mean_test_score[1], 4)) test_scores.append(round(mean_test_score[2], 4)) break print('Valid Scores: {}'.format(valid_scores)) print('Test Scores: {}'.format(test_scores)) out_matrix = np.stack([valid_precision, valid_recall, valid_scores, test_precision, test_recall, test_scores], axis=1) np.savetxt('results.csv', out_matrix, delimiter=',')
return score, loss_data.item() best_score = -1 best_loss = 10000 best_model = None best_loss_curve = [] val_early_loss = 10000 val_early_score = -1 model = GAT(g, num_feats, 256, n_classes, [4, 4, 6], F.elu, 0.0001, 0.0001, 0.2, True) loss_fcn = torch.nn.BCEWithLogitsLoss() # use optimizer optimizer = torch.optim.Adam(model.parameters(), lr=0.005) model = model.to(device) save_loss = [] for epoch in range(200): model.train() loss_list = [] for train_batch in batch_list: model.g = g.subgraph(train_batch) for layer in model.gat_layers: layer.g = g.subgraph(train_batch) input_feature = features[train_batch] logits = model(input_feature) loss = loss_fcn(logits, labels[train_batch].float()) optimizer.zero_grad() loss.backward() optimizer.step()