def test_regression_method_bad_type(self): """ Make sure we cannot call the Factor linear regression method on factors or slices that are not of float or int dtype. """ # These are arbitrary for the purpose of this test. returns_length = 2 regression_length = 10 returns = Returns(window_length=returns_length, inputs=[self.col]) returns_slice = returns[self.my_asset] class BadTypeFactor(CustomFactor): window_length = 1 inputs = [] dtype = datetime64ns_dtype window_safe = True def compute(self, today, assets, out): pass bad_type_factor = BadTypeFactor() bad_type_factor_slice = bad_type_factor[self.my_asset] with self.assertRaises(TypeError): bad_type_factor.linear_regression( target=returns_slice, regression_length=regression_length, ) with self.assertRaises(TypeError): returns.linear_regression( target=bad_type_factor_slice, regression_length=regression_length, )
def test_factor_correlation_methods(self, returns_length, correlation_length): """ Ensure that `Factor.pearsonr` and `Factor.spearmanr` are consistent with the built-in factors `RollingPearsonOfReturns` and `RollingSpearmanOfReturns`. """ my_asset = self.my_asset start_date = self.pipeline_start_date end_date = self.pipeline_end_date run_pipeline = self.run_pipeline returns = Returns(window_length=returns_length, inputs=[self.col]) returns_slice = returns[my_asset] pearson = returns.pearsonr( target=returns_slice, correlation_length=correlation_length, ) spearman = returns.spearmanr( target=returns_slice, correlation_length=correlation_length, ) expected_pearson = RollingPearsonOfReturns( target=my_asset, returns_length=returns_length, correlation_length=correlation_length, ) expected_spearman = RollingSpearmanOfReturns( target=my_asset, returns_length=returns_length, correlation_length=correlation_length, ) # These built-ins construct their own Returns factor to use as inputs, # so the only way to set our own inputs is to do so after the fact. # This should not be done in practice. It is necessary here because we # want Returns to use our random data as an input, but by default it is # using USEquityPricing.close. expected_pearson.inputs = [returns, returns_slice] expected_spearman.inputs = [returns, returns_slice] columns = { 'pearson': pearson, 'spearman': spearman, 'expected_pearson': expected_pearson, 'expected_spearman': expected_spearman, } results = run_pipeline(Pipeline(columns=columns), start_date, end_date) pearson_results = results['pearson'].unstack() spearman_results = results['spearman'].unstack() expected_pearson_results = results['expected_pearson'].unstack() expected_spearman_results = results['expected_spearman'].unstack() assert_frame_equal(pearson_results, expected_pearson_results) assert_frame_equal(spearman_results, expected_spearman_results)
def test_slice(self, my_asset_column, window_length_): """ Test that slices can be created by indexing into a term, and that they have the correct shape when used as inputs. """ sids = self.sids my_asset = self.asset_finder.retrieve_asset(self.sids[my_asset_column]) returns = Returns(window_length=2, inputs=[self.col]) returns_slice = returns[my_asset] class UsesSlicedInput(CustomFactor): window_length = window_length_ inputs = [returns, returns_slice] def compute(self, today, assets, out, returns, returns_slice): # Make sure that our slice is the correct shape (i.e. has only # one column) and that it has the same values as the original # returns factor from which it is derived. assert returns_slice.shape == (self.window_length, 1) assert returns.shape == (self.window_length, len(sids)) check_arrays(returns_slice[:, 0], returns[:, my_asset_column]) # Assertions about the expected slice data are made in the `compute` # function of our custom factor above. self.run_pipeline( Pipeline(columns={'uses_sliced_input': UsesSlicedInput()}), self.pipeline_start_date, self.pipeline_end_date, )
def test_returns(self, seed_value, window_length): returns = Returns(window_length=window_length) today = datetime64(1, 'ns') assets = arange(3) out = empty((3, ), dtype=float) seed(seed_value) # Seed so we get deterministic results. test_data = abs(randn(window_length, 3)) # Calculate the expected returns expected = (test_data[-1] - test_data[0]) / test_data[0] out = empty((3, ), dtype=float) returns.compute(today, assets, out, test_data) check_allclose(expected, out)
def test_factor_regression_method(self, returns_length, regression_length): """ Ensure that `Factor.linear_regression` is consistent with the built-in factor `RollingLinearRegressionOfReturns`. """ my_asset = self.my_asset start_date = self.pipeline_start_date end_date = self.pipeline_end_date run_pipeline = self.run_pipeline returns = Returns(window_length=returns_length, inputs=[self.col]) returns_slice = returns[my_asset] regression = returns.linear_regression( target=returns_slice, regression_length=regression_length, ) expected_regression = RollingLinearRegressionOfReturns( target=my_asset, returns_length=returns_length, regression_length=regression_length, ) # This built-in constructs its own Returns factor to use as an input, # so the only way to set our own input is to do so after the fact. This # should not be done in practice. It is necessary here because we want # Returns to use our random data as an input, but by default it is # using USEquityPricing.close. expected_regression.inputs = [returns, returns_slice] columns = { 'regression': regression, 'expected_regression': expected_regression, } results = run_pipeline(Pipeline(columns=columns), start_date, end_date) regression_results = results['regression'].unstack() expected_regression_results = results['expected_regression'].unstack() assert_frame_equal(regression_results, expected_regression_results)
def test_slice_with_masking(self, unmasked_column, slice_column): """ Test that masking a factor that uses slices as inputs does not mask the slice data. """ sids = self.sids asset_finder = self.asset_finder start_date = self.pipeline_start_date end_date = self.pipeline_end_date # Create a filter that masks out all but a single asset. unmasked_asset = asset_finder.retrieve_asset(sids[unmasked_column]) unmasked_asset_only = (AssetID().eq(unmasked_asset.sid)) # Asset used to create our slice. In the cases where this is different # than `unmasked_asset`, our slice should still have non-missing data # when used as an input to our custom factor. That is, it should not be # masked out. slice_asset = asset_finder.retrieve_asset(sids[slice_column]) returns = Returns(window_length=2, inputs=[self.col]) returns_slice = returns[slice_asset] returns_results = self.run_pipeline( Pipeline(columns={'returns': returns}), start_date, end_date, ) returns_results = returns_results['returns'].unstack() class UsesSlicedInput(CustomFactor): window_length = 1 inputs = [returns, returns_slice] def compute(self, today, assets, out, returns, returns_slice): # Ensure that our mask correctly affects the `returns` input # and does not affect the `returns_slice` input. assert returns.shape == (1, 1) assert returns_slice.shape == (1, 1) assert returns[0, 0] == \ returns_results.loc[today, unmasked_asset] assert returns_slice[0, 0] == \ returns_results.loc[today, slice_asset] columns = {'masked': UsesSlicedInput(mask=unmasked_asset_only)} # Assertions about the expected data are made in the `compute` function # of our custom factor above. self.run_pipeline(Pipeline(columns=columns), start_date, end_date)
def test_non_existent_asset(self): """ Test that indexing into a term with a non-existent asset raises the proper exception. """ my_asset = Asset(0, exchange="TEST") returns = Returns(window_length=2, inputs=[self.col]) returns_slice = returns[my_asset] class UsesSlicedInput(CustomFactor): window_length = 1 inputs = [returns_slice] def compute(self, today, assets, out, returns_slice): pass with self.assertRaises(NonExistentAssetInTimeFrame): self.run_pipeline( Pipeline(columns={'uses_sliced_input': UsesSlicedInput()}), self.pipeline_start_date, self.pipeline_end_date, )
def test_factor_regression_method_two_factors(self, regression_length): """ Tests for `Factor.linear_regression` when passed another 2D factor instead of a Slice. """ assets = self.assets dates = self.dates start_date = self.pipeline_start_date end_date = self.pipeline_end_date start_date_index = self.start_date_index end_date_index = self.end_date_index num_days = self.num_days run_pipeline = self.run_pipeline # The order of these is meant to align with the output of `linregress`. outputs = ['beta', 'alpha', 'r_value', 'p_value', 'stderr'] # Ensure that the `linear_regression` method cannot be called with two # 2D factors which have different masks. returns_masked_1 = Returns( window_length=5, inputs=[self.col], mask=AssetID().eq(1), ) returns_masked_2 = Returns( window_length=5, inputs=[self.col], mask=AssetID().eq(2), ) with self.assertRaises(IncompatibleTerms): returns_masked_1.linear_regression( target=returns_masked_2, regression_length=regression_length, ) returns_5 = Returns(window_length=5, inputs=[self.col]) returns_10 = Returns(window_length=10, inputs=[self.col]) regression_factor = returns_5.linear_regression( target=returns_10, regression_length=regression_length, ) columns = { output: getattr(regression_factor, output) for output in outputs } pipeline = Pipeline(columns=columns) results = run_pipeline(pipeline, start_date, end_date) output_results = {} expected_output_results = {} for output in outputs: output_results[output] = results[output].unstack() expected_output_results[output] = full_like( output_results[output], nan, ) # Run a separate pipeline that calculates returns starting # (regression_length - 1) days prior to our start date. This is because # we need (regression_length - 1) extra days of returns to compute our # expected regressions. columns = {'returns_5': returns_5, 'returns_10': returns_10} results = run_pipeline( Pipeline(columns=columns), dates[start_date_index - (regression_length - 1)], dates[end_date_index], ) returns_5_results = results['returns_5'].unstack() returns_10_results = results['returns_10'].unstack() # On each day, for each asset, calculate the expected regression # results of Y ~ X where Y is the asset's rolling 5 day returns and X # is the asset's rolling 10 day returns. Each regression is calculated # over `regression_length` days of data. for day in range(num_days): todays_returns_5 = returns_5_results.iloc[ day:day + regression_length ] todays_returns_10 = returns_10_results.iloc[ day:day + regression_length ] for asset, asset_returns_5 in todays_returns_5.iteritems(): asset_column = int(asset) - 1 asset_returns_10 = todays_returns_10[asset] expected_regression_results = linregress( y=asset_returns_5, x=asset_returns_10, ) for i, output in enumerate(outputs): expected_output_results[output][day, asset_column] = \ expected_regression_results[i] for output in outputs: output_result = output_results[output] expected_output_result = DataFrame( expected_output_results[output], index=dates[start_date_index:end_date_index + 1], columns=assets, ) assert_frame_equal(output_result, expected_output_result)
def test_factor_correlation_methods_two_factors(self, correlation_length): """ Tests for `Factor.pearsonr` and `Factor.spearmanr` when passed another 2D factor instead of a Slice. """ assets = self.assets dates = self.dates start_date = self.pipeline_start_date end_date = self.pipeline_end_date start_date_index = self.start_date_index end_date_index = self.end_date_index num_days = self.num_days run_pipeline = self.run_pipeline # Ensure that the correlation methods cannot be called with two 2D # factors which have different masks. returns_masked_1 = Returns( window_length=5, inputs=[self.col], mask=AssetID().eq(1), ) returns_masked_2 = Returns( window_length=5, inputs=[self.col], mask=AssetID().eq(2), ) with self.assertRaises(IncompatibleTerms): returns_masked_1.pearsonr( target=returns_masked_2, correlation_length=correlation_length, ) with self.assertRaises(IncompatibleTerms): returns_masked_1.spearmanr( target=returns_masked_2, correlation_length=correlation_length, ) returns_5 = Returns(window_length=5, inputs=[self.col]) returns_10 = Returns(window_length=10, inputs=[self.col]) pearson_factor = returns_5.pearsonr( target=returns_10, correlation_length=correlation_length, ) spearman_factor = returns_5.spearmanr( target=returns_10, correlation_length=correlation_length, ) columns = { 'pearson_factor': pearson_factor, 'spearman_factor': spearman_factor, } pipeline = Pipeline(columns=columns) results = run_pipeline(pipeline, start_date, end_date) pearson_results = results['pearson_factor'].unstack() spearman_results = results['spearman_factor'].unstack() # Run a separate pipeline that calculates returns starting # (correlation_length - 1) days prior to our start date. This is # because we need (correlation_length - 1) extra days of returns to # compute our expected correlations. columns = {'returns_5': returns_5, 'returns_10': returns_10} results = run_pipeline( Pipeline(columns=columns), dates[start_date_index - (correlation_length - 1)], dates[end_date_index], ) returns_5_results = results['returns_5'].unstack() returns_10_results = results['returns_10'].unstack() # On each day, calculate the expected correlation coefficients # between each asset's 5 and 10 day rolling returns. Each correlation # is calculated over `correlation_length` days. expected_pearson_results = full_like(pearson_results, nan) expected_spearman_results = full_like(spearman_results, nan) for day in range(num_days): todays_returns_5 = returns_5_results.iloc[ day:day + correlation_length ] todays_returns_10 = returns_10_results.iloc[ day:day + correlation_length ] for asset, asset_returns_5 in todays_returns_5.iteritems(): asset_column = int(asset) - 1 asset_returns_10 = todays_returns_10[asset] expected_pearson_results[day, asset_column] = pearsonr( asset_returns_5, asset_returns_10, )[0] expected_spearman_results[day, asset_column] = spearmanr( asset_returns_5, asset_returns_10, )[0] expected_pearson_results = DataFrame( data=expected_pearson_results, index=dates[start_date_index:end_date_index + 1], columns=assets, ) assert_frame_equal(pearson_results, expected_pearson_results) expected_spearman_results = DataFrame( data=expected_spearman_results, index=dates[start_date_index:end_date_index + 1], columns=assets, ) assert_frame_equal(spearman_results, expected_spearman_results)
def test_regression_of_returns_factor(self, returns_length, regression_length): """ Tests for the built-in factor `RollingLinearRegressionOfReturns`. """ assets = self.assets my_asset = self.my_asset my_asset_column = self.my_asset_column dates = self.dates start_date = self.pipeline_start_date end_date = self.pipeline_end_date start_date_index = self.start_date_index end_date_index = self.end_date_index num_days = self.num_days run_pipeline = self.run_pipeline # The order of these is meant to align with the output of `linregress`. outputs = ['beta', 'alpha', 'r_value', 'p_value', 'stderr'] returns = Returns(window_length=returns_length) masks = self.cascading_mask, self.alternating_mask, NotSpecified expected_mask_results = ( self.expected_cascading_mask_result, self.expected_alternating_mask_result, self.expected_no_mask_result, ) for mask, expected_mask in zip(masks, expected_mask_results): regression_factor = RollingLinearRegressionOfReturns( target=my_asset, returns_length=returns_length, regression_length=regression_length, mask=mask, ) columns = { output: getattr(regression_factor, output) for output in outputs } pipeline = Pipeline(columns=columns) if mask is not NotSpecified: pipeline.add(mask, 'mask') results = run_pipeline(pipeline, start_date, end_date) if mask is not NotSpecified: mask_results = results['mask'].unstack() check_arrays(mask_results.values, expected_mask) output_results = {} expected_output_results = {} for output in outputs: output_results[output] = results[output].unstack() expected_output_results[output] = full_like( output_results[output], nan, ) # Run a separate pipeline that calculates returns starting # (regression_length - 1) days prior to our start date. This is # because we need (regression_length - 1) extra days of returns to # compute our expected regressions. results = run_pipeline( Pipeline(columns={'returns': returns}), dates[start_date_index - (regression_length - 1)], dates[end_date_index], ) returns_results = results['returns'].unstack() # On each day, calculate the expected regression results for Y ~ X # where Y is the asset we are interested in and X is each other # asset. Each regression is calculated over `regression_length` # days of data. for day in range(num_days): todays_returns = returns_results.iloc[ day:day + regression_length ] my_asset_returns = todays_returns.iloc[:, my_asset_column] for asset, other_asset_returns in todays_returns.iteritems(): asset_column = int(asset) - 1 expected_regression_results = linregress( y=other_asset_returns, x=my_asset_returns, ) for i, output in enumerate(outputs): expected_output_results[output][day, asset_column] = \ expected_regression_results[i] for output in outputs: output_result = output_results[output] expected_output_result = DataFrame( where(expected_mask, expected_output_results[output], nan), index=dates[start_date_index:end_date_index + 1], columns=assets, ) assert_frame_equal(output_result, expected_output_result)
def test_correlation_factors(self, returns_length, correlation_length): """ Tests for the built-in factors `RollingPearsonOfReturns` and `RollingSpearmanOfReturns`. """ assets = self.assets my_asset = self.my_asset my_asset_column = self.my_asset_column dates = self.dates start_date = self.pipeline_start_date end_date = self.pipeline_end_date start_date_index = self.start_date_index end_date_index = self.end_date_index num_days = self.num_days run_pipeline = self.run_pipeline returns = Returns(window_length=returns_length) masks = (self.cascading_mask, self.alternating_mask, NotSpecified) expected_mask_results = ( self.expected_cascading_mask_result, self.expected_alternating_mask_result, self.expected_no_mask_result, ) for mask, expected_mask in zip(masks, expected_mask_results): pearson_factor = RollingPearsonOfReturns( target=my_asset, returns_length=returns_length, correlation_length=correlation_length, mask=mask, ) spearman_factor = RollingSpearmanOfReturns( target=my_asset, returns_length=returns_length, correlation_length=correlation_length, mask=mask, ) columns = { 'pearson_factor': pearson_factor, 'spearman_factor': spearman_factor, } pipeline = Pipeline(columns=columns) if mask is not NotSpecified: pipeline.add(mask, 'mask') results = run_pipeline(pipeline, start_date, end_date) pearson_results = results['pearson_factor'].unstack() spearman_results = results['spearman_factor'].unstack() if mask is not NotSpecified: mask_results = results['mask'].unstack() check_arrays(mask_results.values, expected_mask) # Run a separate pipeline that calculates returns starting # (correlation_length - 1) days prior to our start date. This is # because we need (correlation_length - 1) extra days of returns to # compute our expected correlations. results = run_pipeline( Pipeline(columns={'returns': returns}), dates[start_date_index - (correlation_length - 1)], dates[end_date_index], ) returns_results = results['returns'].unstack() # On each day, calculate the expected correlation coefficients # between the asset we are interested in and each other asset. Each # correlation is calculated over `correlation_length` days. expected_pearson_results = full_like(pearson_results, nan) expected_spearman_results = full_like(spearman_results, nan) for day in range(num_days): todays_returns = returns_results.iloc[ day:day + correlation_length ] my_asset_returns = todays_returns.iloc[:, my_asset_column] for asset, other_asset_returns in todays_returns.iteritems(): asset_column = int(asset) - 1 expected_pearson_results[day, asset_column] = pearsonr( my_asset_returns, other_asset_returns, )[0] expected_spearman_results[day, asset_column] = spearmanr( my_asset_returns, other_asset_returns, )[0] expected_pearson_results = DataFrame( data=where(expected_mask, expected_pearson_results, nan), index=dates[start_date_index:end_date_index + 1], columns=assets, ) assert_frame_equal(pearson_results, expected_pearson_results) expected_spearman_results = DataFrame( data=where(expected_mask, expected_spearman_results, nan), index=dates[start_date_index:end_date_index + 1], columns=assets, ) assert_frame_equal(spearman_results, expected_spearman_results)
def test_daily_returns_is_special_case_of_returns(self): self.check_equivalent_terms({ 'daily': DailyReturns(), 'manual_daily': Returns(window_length=2), })
def test_factor_regression_method(self, returns_length, regression_length): """ Ensure that `Factor.linear_regression` is consistent with the built-in factor `RollingLinearRegressionOfReturns`. """ my_asset = self.asset_finder.retrieve_asset(self.sids[0]) returns = Returns(window_length=returns_length, inputs=[self.col]) returns_slice = returns[my_asset] regression = returns.linear_regression( target=returns_slice, regression_length=regression_length, ) expected_regression = RollingLinearRegressionOfReturns( target=my_asset, returns_length=returns_length, regression_length=regression_length, ) # These built-ins construct their own Returns factor to use as inputs, # so the only way to set our own inputs is to do so after the fact. # This should not be done in practice. It is necessary here because we # want Returns to use our random data as an input, but by default it is # using USEquityPricing.close. expected_regression.inputs = [returns, returns_slice] columns = { 'regression': regression, 'expected_regression': expected_regression, } results = self.run_pipeline( Pipeline(columns=columns), self.pipeline_start_date, self.pipeline_end_date, ) regression_results = results['regression'].unstack() expected_regression_results = results['expected_regression'].unstack() assert_frame_equal(regression_results, expected_regression_results) # Make sure we cannot call the linear regression method on factors or # slices of dtype `datetime64[ns]`. class DateFactor(CustomFactor): window_length = 1 inputs = [] dtype = datetime64ns_dtype window_safe = True def compute(self, today, assets, out): pass date_factor = DateFactor() date_factor_slice = date_factor[my_asset] with self.assertRaises(TypeError): date_factor.linear_regression( target=returns_slice, regression_length=regression_length, ) with self.assertRaises(TypeError): returns.linear_regression( target=date_factor_slice, regression_length=regression_length, )