コード例 #1
0
def nuclear_attraction(gaussian_1, gaussian_2, nuclei):
    a_1 = gaussian_1.exponent
    a_2 = gaussian_2.exponent
    l_1 = gaussian_1.integral_exponents
    l_2 = gaussian_2.integral_exponents

    r_a = gaussian_1.coordinates
    r_b = gaussian_2.coordinates
    r_c = nuclei.coordinates
    r_p = gaussian_product_coordinate(a_1, r_a, a_2, r_b)

    r_ab = coordinate_distance(r_a, r_b)
    r_pc = coordinate_distance(r_p, r_c)

    r_p_a = vector_minus(r_p, r_a)
    r_p_b = vector_minus(r_p, r_b)
    r_p_c = vector_minus(r_p, r_c)

    g = a_1 + a_2

    ans = 0
    for l in range(l_1[0] + l_2[0] + 1):
        for r in range(int(l / 2) + 1):
            for i in range(int((l - 2 * r) / 2) + 1):
                out1 = a_function(l, r, i, l_1[0], l_2[0], r_p_a[0], r_p_b[0],
                                  r_p_c[0], g)
                for m in range(l_1[1] + l_2[1] + 1):
                    for s in range(int(m / 2) + 1):
                        for j in range(int((m - 2 * s) / 2) + 1):
                            out2 = a_function(m, s, j, l_1[1], l_2[1],
                                              r_p_a[1], r_p_b[1], r_p_c[1], g)
                            for n in range(l_1[2] + l_2[2] + 1):
                                for t in range(int(n / 2) + 1):
                                    for k in range(int((n - 2 * t) / 2) + 1):
                                        out3 = a_function(
                                            n, t, k, l_1[2], l_2[2], r_p_a[2],
                                            r_p_b[2], r_p_c[2], g)
                                        v = (l + m +
                                             n) - 2 * (r + s + t) - (i + j + k)
                                        out4 = boys_function(v, g * r_pc**2)
                                        out5 = out1 * out2 * out3 * out4
                                        ans += out5
    ans *= ((2 * pi) / g) * exp(-(a_1 * a_2 * r_ab**2) / g)
    return ans
コード例 #2
0
 def test_input_of_nu_0_and_u_0_returns_1(self):
     output = boys_function(0, 0)
     testing.assert_approx_equal(output, 1, 6)
コード例 #3
0
 def test_input_of_nu_2_and_u_4_4757221852728435_returns_0_0139425(self):
     output = boys_function(2, 4.4757221852728435)
     testing.assert_approx_equal(output, 0.0139425, 6)
コード例 #4
0
 def test_input_of_nu_2_and_4_802164876034457e_minus_31_returns_0_200000(
         self):
     output = boys_function(2, 4.802164876034457e-31)
     testing.assert_approx_equal(output, 0.200000, 6)
コード例 #5
0
 def test_input_of_nu_2_and_0_minus_31_returns_0_200000(self):
     output = boys_function(2, 0)
     testing.assert_approx_equal(output, 0.200000, 6)
コード例 #6
0
 def test_input_of_nu_1_and_u_130_80051761256559_returns_0_00029621(self):
     output = boys_function(1, 130.80051761256559)
     testing.assert_approx_equal(output, 0.000296210, 6)
コード例 #7
0
 def test_input_of_nu_1_and_u_12_0769452374367_returns_0_01055(self):
     output = boys_function(1, 12.0769452374367)
     testing.assert_approx_equal(output, 0.0105576, 6)
コード例 #8
0
 def test_input_of_nu_1_and_4_802164876034457e_minus_31_returns_0_333333(
         self):
     output = boys_function(1, 4.802164876034457e-31)
     testing.assert_approx_equal(output, 0.333333, 6)
コード例 #9
0
 def test_input_of_nu_0_and_u_130_80051761256559_returns_0_077489(self):
     output = boys_function(0, 130.80051761256559)
     testing.assert_approx_equal(output, 0.077489, 6)
コード例 #10
0
 def test_input_of_nu_1_and_0_minus_31_returns_0_333333(self):
     output = boys_function(1, 0)
     testing.assert_approx_equal(output, 0.333333, 6)
コード例 #11
0
 def test_input_of_nu_0_and_u_12_0769452374367_returns_0_2550(self):
     output = boys_function(0, 12.0769452374367)
     testing.assert_approx_equal(output, 0.255015, 6)
コード例 #12
0
 def test_input_of_nu_0_and_u_4_4757221852728435_returns_0_417742(self):
     output = boys_function(0, 4.4757221852728435)
     testing.assert_approx_equal(output, 0.417742, 6)
コード例 #13
0
    def integrate(self, basis_i, basis_j, basis_k, basis_l):
        l_1 = basis_i.integral_exponents
        l_2 = basis_j.integral_exponents
        l_3 = basis_k.integral_exponents
        l_4 = basis_l.integral_exponents
        l_total = sum(l_1) + sum(l_2) + sum(l_3) + sum(l_4)

        r_1 = basis_i.coordinates
        r_2 = basis_j.coordinates
        r_3 = basis_k.coordinates
        r_4 = basis_l.coordinates

        primitives_i = basis_i.primitive_gaussian_array
        primitives_j = basis_j.primitive_gaussian_array
        primitives_k = basis_k.primitive_gaussian_array
        primitives_l = basis_l.primitive_gaussian_array

        n_i = basis_i.normalisation
        n_j = basis_j.normalisation
        n_k = basis_k.normalisation
        n_l = basis_l.normalisation
        n = n_i * n_j * n_k * n_l

        ans = 0.0
        for g1, g2, g3, g4 in itertools.product(primitives_i, primitives_j,
                                                primitives_k, primitives_l):
            c_1 = g1.contraction
            c_2 = g2.contraction
            c_3 = g3.contraction
            c_4 = g4.contraction
            n_1 = g1.normalisation
            n_2 = g2.normalisation
            n_3 = g3.normalisation
            n_4 = g4.normalisation
            contraction = c_1 * c_2 * c_3 * c_4 * n_1 * n_2 * n_3 * n_4 * n

            a_1 = g1.exponent
            a_2 = g2.exponent
            a_3 = g3.exponent
            a_4 = g4.exponent
            a_5 = a_1 + a_2
            a_6 = a_3 + a_4
            self.a_7 = (a_5 * a_6) / (a_5 + a_6)

            r_5 = gaussian_product_coordinate(a_1, r_1, a_2, r_2)
            r_6 = gaussian_product_coordinate(a_3, r_3, a_4, r_4)
            self.r_7 = gaussian_product_coordinate(a_5, r_5, a_6, r_6)

            r_12 = coordinate_distance(r_1, r_2)
            r_34 = coordinate_distance(r_3, r_4)
            r_56 = coordinate_distance(r_5, r_6)

            boys_x = (a_5 * a_6 * r_56**2) / (a_5 + a_6)
            boys_out1 = (2 * pi**(5 / 2)) / (a_5 * a_6 * sqrt(a_5 + a_6))
            boys_out2 = exp(((-a_1 * a_2 * r_12**2) / a_5) -
                            ((a_3 * a_4 * r_34**2) / a_6))
            boys_out3 = boys_function(l_total, boys_x)
            self.end_dict = {l_total: boys_out1 * boys_out2 * boys_out3}

            m = l_total
            while m >= 1:
                boys_out3 = boys_function_recursion(m, boys_x, boys_out3)
                m -= 1
                self.end_dict[m] = boys_out1 * boys_out2 * boys_out3

            ans += contraction * self.os_begin(0, g1, g2, g3, g4)

        return ans
コード例 #14
0
 def test_input_of_nu_2_and_u_12_0769452374367_returns_0_00131107(self):
     output = boys_function(2, 12.0769452374367)
     testing.assert_approx_equal(output, 0.00131106, 6)
コード例 #15
0
 def test_input_of_nu_1_and_u_4_4757221852728435_returns_0_045396(self):
     output = boys_function(1, 4.4757221852728435)
     testing.assert_approx_equal(output, 0.045396, 6)
コード例 #16
0
 def test_input_of_nu_2_and_u_130_80051761256559_returns_3_3969e_minus_6(
         self):
     output = boys_function(2, 130.80051761256559)
     testing.assert_approx_equal(output, 3.39689e-6, 6)
コード例 #17
0
ファイル: cook_integral.py プロジェクト: ChiCheng45/Gaussium
    def integrate(self, basis_i, basis_j, basis_k, basis_l):
        primitives_i = basis_i.primitive_gaussian_array
        primitives_j = basis_j.primitive_gaussian_array
        primitives_k = basis_k.primitive_gaussian_array
        primitives_l = basis_l.primitive_gaussian_array

        l_1 = basis_i.integral_exponents
        l_2 = basis_j.integral_exponents
        l_3 = basis_k.integral_exponents
        l_4 = basis_l.integral_exponents

        r_1 = basis_i.coordinates
        r_2 = basis_j.coordinates
        r_3 = basis_k.coordinates
        r_4 = basis_l.coordinates

        n_i = basis_i.normalisation
        n_j = basis_j.normalisation
        n_k = basis_k.normalisation
        n_l = basis_l.normalisation
        norm = n_i * n_j * n_k * n_l

        ans = 0.0
        for g1, g2, g3, g4 in itertools.product(primitives_i, primitives_j,
                                                primitives_k, primitives_l):
            self.end_dict = {}
            c_1 = g1.contraction
            c_2 = g2.contraction
            c_3 = g3.contraction
            c_4 = g4.contraction
            n_1 = g1.normalisation
            n_2 = g2.normalisation
            n_3 = g3.normalisation
            n_4 = g4.normalisation
            contraction = c_1 * c_2 * c_3 * c_4 * n_1 * n_2 * n_3 * n_4 * norm

            g5 = gaussian_product(g1, g2)
            g6 = gaussian_product(g3, g4)

            a_1 = g1.exponent
            a_2 = g2.exponent
            a_3 = g3.exponent
            a_4 = g4.exponent
            a_5 = g5.exponent
            a_6 = g6.exponent

            r_5 = g5.coordinates
            r_6 = g6.coordinates
            r_12 = coordinate_distance(r_1, r_2)
            r_34 = coordinate_distance(r_3, r_4)
            r_56 = coordinate_distance(r_5, r_6)

            l_5 = g5.integral_exponents
            l_6 = g6.integral_exponents

            delta = (1 / (4 * a_5)) + (1 / (4 * a_6))

            out_5 = 0
            for l in range(l_5[0] + 1):
                for r in range(int(l / 2) + 1):
                    for ll in range(l_6[0] + 1):
                        for rr in range(int(ll / 2) + 1):
                            for i in range(
                                    int((l + ll - 2 * r - 2 * rr) / 2) + 1):
                                out1 = self.b_function(l, ll, r, rr, i, l_1[0],
                                                       l_2[0], r_1[0], r_2[0],
                                                       r_5[0], a_5, l_3[0],
                                                       l_4[0], r_3[0], r_4[0],
                                                       r_6[0], a_6)
                                for m in range(l_5[1] + 1):
                                    for s in range(int(m / 2) + 1):
                                        for mm in range(l_6[1] + 1):
                                            for ss in range(int(mm / 2) + 1):
                                                for j in range(
                                                        int((m + mm - 2 * s -
                                                             2 * ss) / 2) + 1):
                                                    out2 = self.b_function(
                                                        m, mm, s, ss, j,
                                                        l_1[1], l_2[1], r_1[1],
                                                        r_2[1], r_5[1], a_5,
                                                        l_3[1], l_4[1], r_3[1],
                                                        r_4[1], r_6[1], a_6)
                                                    for n in range(l_5[2] + 1):
                                                        for t in range(
                                                                int(n / 2) +
                                                                1):
                                                            for nn in range(
                                                                    l_6[2] +
                                                                    1):
                                                                for tt in range(
                                                                        int(nn
                                                                            / 2
                                                                            ) +
                                                                        1):
                                                                    for k in range(
                                                                            int((
                                                                                n
                                                                                +
                                                                                nn
                                                                                -
                                                                                2
                                                                                *
                                                                                t
                                                                                -
                                                                                2
                                                                                *
                                                                                tt
                                                                            ) / 2
                                                                                )
                                                                            +
                                                                            1):
                                                                        out3 = self.b_function(
                                                                            n,
                                                                            nn,
                                                                            t,
                                                                            tt,
                                                                            k,
                                                                            l_1[2],
                                                                            l_2[2],
                                                                            r_1[2],
                                                                            r_2[2],
                                                                            r_5[2],
                                                                            a_5,
                                                                            l_3[2],
                                                                            l_4[2],
                                                                            r_3[2],
                                                                            r_4[2],
                                                                            r_6[2],
                                                                            a_6
                                                                        )
                                                                        v = l + ll + m + mm + n + nn - 2 * (
                                                                            r +
                                                                            rr
                                                                            +
                                                                            s +
                                                                            ss
                                                                            +
                                                                            t +
                                                                            tt
                                                                        ) - (
                                                                            i +
                                                                            j +
                                                                            k)
                                                                        if v in self.end_dict:
                                                                            out4 = self.end_dict[
                                                                                v]
                                                                        else:
                                                                            out4 = boys_function(
                                                                                v,
                                                                                (r_56
                                                                                 **
                                                                                 2
                                                                                 /
                                                                                 (4
                                                                                  *
                                                                                  delta
                                                                                  )
                                                                                 )
                                                                            )
                                                                            self.end_dict[
                                                                                v] = out4
                                                                        out_5 += out1 * out2 * out3 * out4
            out_5 *= self.gaussian_product_factor(a_1, a_2, a_3, a_4, a_5, a_6,
                                                  r_12, r_34)
            ans += contraction * out_5
        return ans