def __init__( self, dataset, rw_hops=64, subgraph_size=64, restart_prob=0.8, positional_embedding_size=32, step_dist=[1.0, 0.0, 0.0], ): self.rw_hops = rw_hops self.subgraph_size = subgraph_size self.restart_prob = restart_prob self.positional_embedding_size = positional_embedding_size self.step_dist = step_dist assert positional_embedding_size > 1 if dataset == "motif": self.graphs = self._create_dgl_graph2() else: self.data = data_util.create_node_classification_dataset(dataset).data print(self.data) self.graphs = [self._create_dgl_graph(self.data)] print(self.graphs) #exit(0) self.length = sum([g.number_of_nodes() for g in self.graphs]) self.total = self.length
def __init__(self, dataset, model, hidden_size, num_shuffle, seed, **model_args): self.data = create_node_classification_dataset(dataset).data self.label_matrix = self.data.y self.num_nodes, self.num_classes = self.data.y.shape self.model = build_model(model, hidden_size, **model_args) self.hidden_size = hidden_size self.num_shuffle = num_shuffle self.seed = seed