def as_dataframe(self, label=None, labels=None): """Return all the selected time series as a :mod:`pandas` dataframe. .. note:: Use of this method requires that you have :mod:`pandas` installed. Examples:: # Generate a dataframe with a multi-level column header including # the resource type and all available resource and metric labels. # This can be useful for seeing what labels are available. dataframe = query.as_dataframe() # Generate a dataframe using a particular label for the column # names. dataframe = query.as_dataframe(label='instance_name') # Generate a dataframe with a multi-level column header. dataframe = query.as_dataframe(labels=['zone', 'instance_name']) # Generate a dataframe with a multi-level column header, assuming # the metric is issued by more than one type of resource. dataframe = query.as_dataframe( labels=['resource_type', 'instance_id']) :type label: string or None :param label: The label name to use for the dataframe header. This can be the name of a resource label or metric label (e.g., ``"instance_name"``), or the string ``"resource_type"``. :type labels: list of strings, or None :param labels: A list or tuple of label names to use for the dataframe header. If more than one label name is provided, the resulting dataframe will have a multi-level column header. Providing values for both ``label`` and ``labels`` is an error. :rtype: :class:`pandas.DataFrame` :returns: A dataframe where each column represents one time series. """ return _build_dataframe(self, label, labels) # pragma: NO COVER
def _callFUT(self, *args, **kwargs): from gcloud.monitoring._dataframe import _build_dataframe return _build_dataframe(*args, **kwargs)