コード例 #1
0
def gcs_to_utm_dict(tile_list,
                    tile_utm_zone_dict,
                    tile_gcs_osr,
                    tile_gcs_wkt_dict,
                    gcs_buffer=0.25,
                    snap_xmin=None,
                    snap_ymin=None,
                    snap_cs=None):
    """Return a dictionary of Landsat path/row GCS extents projected to UTM

    Args:
        tile_list:
        tile_utm_zone_dict:
        tile_gcs_osr:
        tile_gcs_wkt_dict:
        gcs_buffer:
        snap_xmin:
        snap_ymin:
        snap_cs:
    Returns:
        dictionary
    """
    # If parameters are not set, try to get from env
    # if snap_xmin is None and env.snap_xmin:
    #     snap_xmin = env.snap_xmin
    # if snap_ymin is None and env.snap_ymin:
    #     snap_ymin = env.snap_ymin
    # if snap_cs is None and env.cellsize:
    #     snap_cs = env.cellsize
    logging.info('\nCalculate projected extent for each path/row')
    output_dict = dict()
    for tile_name in sorted(tile_list):
        logging.info('  {}'.format(tile_name))
        # Create an OSR object from the utm projection
        tile_utm_osr = gdc.epsg_osr(32600 + int(tile_utm_zone_dict[tile_name]))
        # tile_utm_proj = gdc.osr_proj(tile_utm_osr)
        # Create utm transformation
        tile_utm_tx = osr.CoordinateTransformation(tile_gcs_osr, tile_utm_osr)
        tile_gcs_geom = ogr.CreateGeometryFromWkt(tile_gcs_wkt_dict[tile_name])
        # Buffer extent by 0.1 degrees
        # DEADBEEF - Buffer fails if GDAL is not built with GEOS support
        # tile_gcs_geom = tile_gcs_geom.Buffer(gcs_buffer)
        # Create gcs to utm transformer and apply it
        tile_utm_geom = tile_gcs_geom.Clone()
        tile_utm_geom.Transform(tile_utm_tx)
        tile_utm_extent = gdc.Extent(tile_utm_geom.GetEnvelope())
        tile_utm_extent = tile_utm_extent.ogrenv_swap()
        # 0.1 degrees ~ 10 km
        tile_utm_extent.buffer_extent(gcs_buffer * 100000)
        tile_utm_extent.adjust_to_snap('EXPAND', snap_xmin, snap_ymin, snap_cs)
        output_dict[tile_name] = tile_utm_extent
    return output_dict
コード例 #2
0
def main(netcdf_ws=os.getcwd(), ancillary_ws=os.getcwd(),
         output_ws=os.getcwd(), start_date=None, end_date=None,
         extent_path=None, output_extent=None,
         stats_flag=True, overwrite_flag=False):
    """Extract DAYMET precipitation

    Args:
        netcdf_ws (str): folder of DAYMET netcdf files
        ancillary_ws (str): folder of ancillary rasters
        output_ws (str): folder of output rasters
        start_date (str): ISO format date (YYYY-MM-DD)
        end_date (str): ISO format date (YYYY-MM-DD)
        extent_path (str): file path defining the output extent
        output_extent (list): decimal degrees values defining output extent
        stats_flag (bool): if True, compute raster statistics.
            Default is True.
        overwrite_flag (bool): if True, overwrite existing files

    Returns:
        None
    """
    logging.info('\nExtracting DAYMET precipitation')

    # If a date is not set, process 2015
    try:
        start_dt = dt.datetime.strptime(start_date, '%Y-%m-%d')
        logging.debug('  Start date: {}'.format(start_dt))
    except:
        start_dt = dt.datetime(2015, 1, 1)
        logging.info('  Start date: {}'.format(start_dt))
    try:
        end_dt = dt.datetime.strptime(end_date, '%Y-%m-%d')
        logging.debug('  End date:   {}'.format(end_dt))
    except:
        end_dt = dt.datetime(2015, 12, 31)
        logging.info('  End date:   {}'.format(end_dt))

    # Save DAYMET lat, lon, and elevation arrays
    mask_raster = os.path.join(ancillary_ws, 'daymet_mask.img')

    daymet_re = re.compile('daymet_v3_(?P<VAR>\w+)_(?P<YEAR>\d{4})_na.nc4$')

    # DAYMET band name dictionary
    # daymet_band_dict = dict()
    # daymet_band_dict['prcp'] = 'precipitation_amount'
    # daymet_band_dict['srad'] = 'surface_downwelling_shortwave_flux_in_air'
    # daymet_band_dict['sph'] = 'specific_humidity'
    # daymet_band_dict['tmin'] = 'air_temperature'
    # daymet_band_dict['tmax'] = 'air_temperature'

    # Get extent/geo from mask raster
    daymet_ds = gdal.Open(mask_raster)
    daymet_osr = gdc.raster_ds_osr(daymet_ds)
    daymet_proj = gdc.osr_proj(daymet_osr)
    daymet_cs = gdc.raster_ds_cellsize(daymet_ds, x_only=True)
    daymet_extent = gdc.raster_ds_extent(daymet_ds)
    daymet_geo = daymet_extent.geo(daymet_cs)
    daymet_x, daymet_y = daymet_extent.origin()
    daymet_ds = None
    logging.debug('  Projection: {}'.format(daymet_proj))
    logging.debug('  Cellsize: {}'.format(daymet_cs))
    logging.debug('  Geo: {}'.format(daymet_geo))
    logging.debug('  Extent: {}'.format(daymet_extent))
    logging.debug('  Origin: {} {}'.format(daymet_x, daymet_y))

    # Subset data to a smaller extent
    if output_extent is not None:
        logging.info('\nComputing subset extent & geo')
        logging.debug('  Extent: {}'.format(output_extent))
        # Assume input extent is in decimal degrees
        output_extent = gdc.project_extent(
            gdc.Extent(output_extent), gdc.epsg_osr(4326), daymet_osr, 0.001)
        output_extent = gdc.intersect_extents([daymet_extent, output_extent])
        output_extent.adjust_to_snap('EXPAND', daymet_x, daymet_y, daymet_cs)
        output_geo = output_extent.geo(daymet_cs)
        logging.debug('  Geo: {}'.format(output_geo))
        logging.debug('  Extent: {}'.format(output_extent))
    elif extent_path is not None:
        logging.info('\nComputing subset extent & geo')
        if extent_path.lower().endswith('.shp'):
            output_extent = gdc.feature_path_extent(extent_path)
            extent_osr = gdc.feature_path_osr(extent_path)
            extent_cs = None
        else:
            output_extent = gdc.raster_path_extent(extent_path)
            extent_osr = gdc.raster_path_osr(extent_path)
            extent_cs = gdc.raster_path_cellsize(extent_path, x_only=True)
        output_extent = gdc.project_extent(
            output_extent, extent_osr, daymet_osr, extent_cs)
        output_extent = gdc.intersect_extents([daymet_extent, output_extent])
        output_extent.adjust_to_snap('EXPAND', daymet_x, daymet_y, daymet_cs)
        output_geo = output_extent.geo(daymet_cs)
        logging.debug('  Geo: {}'.format(output_geo))
        logging.debug('  Extent: {}'.format(output_extent))
    else:
        output_extent = daymet_extent.copy()
        output_geo = daymet_geo[:]
    # output_shape = output_extent.shape(cs=daymet_cs)
    xi, yi = gdc.array_geo_offsets(daymet_geo, output_geo, daymet_cs)
    output_rows, output_cols = output_extent.shape(daymet_cs)
    logging.debug('  Shape: {} {}'.format(output_rows, output_cols))
    logging.debug('  Offsets: {} {} (x y)'.format(xi, yi))

    # Process each variable
    input_var = 'prcp'
    output_var = 'ppt'
    logging.info("\nVariable: {}".format(input_var))

    # Build output folder
    var_ws = os.path.join(output_ws, output_var)
    if not os.path.isdir(var_ws):
        os.makedirs(var_ws)

    # Process each file in the input workspace
    for input_name in sorted(os.listdir(netcdf_ws)):
        logging.debug("{}".format(input_name))
        input_match = daymet_re.match(input_name)
        if not input_match:
            logging.debug('  Regular expression didn\'t match, skipping')
            continue
        elif input_match.group('VAR') != input_var:
            logging.debug('  Variable didn\'t match, skipping')
            continue
        year_str = input_match.group('YEAR')
        logging.info("  Year: {}".format(year_str))
        year_int = int(year_str)
        year_days = int(dt.datetime(year_int, 12, 31).strftime('%j'))
        if start_dt is not None and year_int < start_dt.year:
            logging.debug('    Before start date, skipping')
            continue
        elif end_dt is not None and year_int > end_dt.year:
            logging.debug('    After end date, skipping')
            continue

        # Build input file path
        input_raster = os.path.join(netcdf_ws, input_name)
        # if not os.path.isfile(input_raster):
        #     logging.debug(
        #         '    Input raster doesn\'t exist, skipping    {}'.format(
        #             input_raster))
        #     continue

        # Build output folder
        output_year_ws = os.path.join(var_ws, year_str)
        if not os.path.isdir(output_year_ws):
            os.makedirs(output_year_ws)

        # Read in the DAYMET NetCDF file
        input_nc_f = netCDF4.Dataset(input_raster, 'r')
        # logging.debug(input_nc_f.variables)

        # Check all valid dates in the year
        year_dates = date_range(
            dt.datetime(year_int, 1, 1), dt.datetime(year_int + 1, 1, 1))
        for date_dt in year_dates:
            if start_dt is not None and date_dt < start_dt:
                logging.debug('  {} - before start date, skipping'.format(
                    date_dt.date()))
                continue
            elif end_dt is not None and date_dt > end_dt:
                logging.debug('  {} - after end date, skipping'.format(
                    date_dt.date()))
                continue
            else:
                logging.info('  {}'.format(date_dt.date()))

            output_path = os.path.join(
                output_year_ws, '{}_{}_daymet.img'.format(
                    output_var, date_dt.strftime('%Y%m%d')))
            if os.path.isfile(output_path):
                logging.debug('    {}'.format(output_path))
                if not overwrite_flag:
                    logging.debug('    File already exists, skipping')
                    continue
                else:
                    logging.debug('    File already exists, removing existing')
                    os.remove(output_path)

            doy = int(date_dt.strftime('%j'))
            doy_i = range(1, year_days + 1).index(doy)

            # Arrays are being read as masked array with a fill value of -9999
            # Convert to basic numpy array arrays with nan values
            try:
                input_ma = input_nc_f.variables[input_var][
                    doy_i, yi: yi + output_rows, xi: xi + output_cols]
            except IndexError:
                logging.info('    date not in netcdf, skipping')
                continue
            input_nodata = float(input_ma.fill_value)
            output_array = input_ma.data.astype(np.float32)
            output_array[output_array == input_nodata] = np.nan

            # Save the array as 32-bit floats
            gdc.array_to_raster(
                output_array.astype(np.float32), output_path,
                output_geo=output_geo, output_proj=daymet_proj,
                stats_flag=stats_flag)

            del input_ma, output_array
        input_nc_f.close()
        del input_nc_f

    logging.debug('\nScript Complete')
コード例 #3
0
def main(extent_path, output_folder, overwrite_flag):
    """Download NED tiles that intersect the study_area

    Script assumes DEM data is in 1x1 WGS84 degree tiles
    Download 10m (1/3 arc-second) or 30m (1 arc-second) versions from:
        10m: rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/Elevation/13/IMG
        30m: rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/Elevation/1/IMG
    For this example, only download 30m DEM

    Args:
        extent_path (str): file path to study area shapefile
        output_folder (str): folder path where files will be saved
        overwrite_flag (bool): If True, overwrite existing files

    Returns:
        None
    """
    logging.info('\nDownload NED tiles')
    site_url = 'rockyftp.cr.usgs.gov'
    site_folder = 'vdelivery/Datasets/Staged/Elevation/1/IMG'
    # site_url = 'ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/Elevation/1/IMG'

    zip_fmt = 'n{:02d}w{:03d}.zip'
    tile_fmt = 'imgn{:02d}w{:03d}_1.img'
    # tile_fmt = 'imgn{:02d}w{:03d}_13.img'

    # Use 1 degree snap point and "cellsize" to get 1x1 degree tiles
    tile_osr = gdc.epsg_osr(4326)
    tile_x, tile_y, tile_cs = 0, 0, 1

    buffer_cells = 0

    # Error checking
    if not os.path.isfile(extent_path):
        logging.error('\nERROR: The input_path does not exist\n')
        return False
    if not os.path.isdir(output_folder):
        os.makedirs(output_folder)

    # Check that input is a shapefile

    # Get the extent of each feature
    lat_lon_list = []
    shp_driver = ogr.GetDriverByName('ESRI Shapefile')
    input_ds = shp_driver.Open(extent_path, 1)
    input_osr = gdc.feature_ds_osr(input_ds)
    input_layer = input_ds.GetLayer()
    input_ftr = input_layer.GetNextFeature()
    while input_ftr:
        input_geom = input_ftr.GetGeometryRef()
        input_extent = gdc.Extent(input_geom.GetEnvelope())
        input_extent = input_extent.ogrenv_swap()
        input_ftr = input_layer.GetNextFeature()
        logging.debug('Input Extent: {}'.format(input_extent))

        # Project study area extent to input raster coordinate system
        output_extent = gdc.project_extent(
            input_extent, input_osr, tile_osr)
        logging.debug('Output Extent: {}'.format(output_extent))

        # Extent needed to select 1x1 degree tiles
        tile_extent = output_extent.copy()
        tile_extent.adjust_to_snap(
            'EXPAND', tile_x, tile_y, tile_cs)
        logging.debug('Tile Extent: {}'.format(tile_extent))

        # Get list of avaiable tiles that intersect the extent
        lat_lon_list.extend([
            (lat, -lon)
            for lon in range(int(tile_extent.xmin), int(tile_extent.xmax))
            for lat in range(int(tile_extent.ymax), int(tile_extent.ymin), -1)])
    lat_lon_list = sorted(list(set(lat_lon_list)))

    # Attempt to download the tiles
    logging.info('')
    for lat_lon in lat_lon_list:
        logging.info('Tile: {}'.format(lat_lon))
        zip_name = zip_fmt.format(*lat_lon)
        zip_url = '/'.join([site_url, site_folder, zip_name])
        zip_path = os.path.join(output_folder, zip_name)
        tile_name = tile_fmt.format(*lat_lon)
        tile_path = os.path.join(output_folder, tile_name)

        logging.debug('  {}'.format(zip_url))
        logging.debug('  {}'.format(zip_path))
        if os.path.isfile(tile_path) and not overwrite_flag:
            logging.debug('  skipping')
            continue
        ftp_download(site_url, site_folder, zip_name, zip_path)

        logging.debug('  extracting')
        try:
            zip_f = zipfile.ZipFile(zip_path)
            zip_f.extract(tile_name, output_folder)
            zip_f.close()
        except Exception as e:
            logging.info('  Unhandled exception: {}'.format(e))

        try:
            os.remove(zip_path)
        except Exception as e:
            logging.info('  Unhandled exception: {}'.format(e))
コード例 #4
0
def main(gis_ws, tile_ws, dem_cs, mask_flag=False, overwrite_flag=False):
    """Download NED tiles that intersect the study_area

    Script assumes DEM data is in 1x1 WGS84 degree tiles
    Download 10m (1/3 arc-second) or 30m (1 arc-second) versions from:
        10m: rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/Elevation/13/IMG
        30m: rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/Elevation/1/IMG
    For this example, only download 30m DEM

    Args:
        gis_ws (str): Folder/workspace path of the GIS data for the project
        tile_ws (str): Folder/workspace path of the DEM tiles
        dem_cs (int): DEM cellsize (10 or 30m)
        mask_flag (bool): If True, only download tiles intersecting zones mask
        overwrite_flag (bool): If True, overwrite existing files

    Returns:
        None
    """
    logging.info('\nDownload DEM tiles')

    zip_fmt = 'n{0:02d}w{1:03d}.zip'
    if dem_cs == 10:
        site_url = 'ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/Elevation/13/IMG'
        tile_fmt = 'imgn{0:02d}w{1:03d}_13.img'
    elif dem_cs == 30:
        site_url = 'ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/Elevation/1/IMG'
        tile_fmt = 'imgn{0:02d}w{1:03d}_1.img'
    else:
        logging.error('\nERROR: The input cellsize must be 10 or 30\n')
        sys.exit()

    # Use 1 degree snap point and "cellsize" to get 1x1 degree tiles
    tile_osr = gdc.epsg_osr(4269)
    tile_buffer = 0.5
    tile_x, tile_y, tile_cs = 0, 0, 1

    scratch_ws = os.path.join(gis_ws, 'scratch')
    zone_raster_path = os.path.join(scratch_ws, 'zone_raster.img')
    zone_polygon_path = os.path.join(scratch_ws, 'zone_polygon.shp')

    # Error checking
    if not os.path.isfile(zone_raster_path):
        logging.error(('\nERROR: The zone raster {} does not exist' +
                       '\n  Try re-running "build_study_area_raster.py"'
                       ).format(zone_raster_path))
        sys.exit()
    if mask_flag and not os.path.isfile(zone_polygon_path):
        logging.error(
            ('\nERROR: The zone polygon {} does not exist and mask_flag=True' +
             '\n  Try re-running "build_study_area_raster.py"'
             ).format(zone_raster_path))
        sys.exit()
    if not os.path.isdir(tile_ws):
        os.makedirs(tile_ws)

    # Reference all output rasters zone raster
    zone_raster_ds = gdal.Open(zone_raster_path)
    output_osr = gdc.raster_ds_osr(zone_raster_ds)
    # output_wkt = gdc.raster_ds_proj(zone_raster_ds)
    output_cs = gdc.raster_ds_cellsize(zone_raster_ds)[0]
    output_x, output_y = gdc.raster_ds_origin(zone_raster_ds)
    output_extent = gdc.raster_ds_extent(zone_raster_ds)
    output_ullr = output_extent.ul_lr_swap()
    zone_raster_ds = None
    logging.debug('\nStudy area properties')
    logging.debug('  Output OSR: {}'.format(output_osr))
    logging.debug('  Output Extent: {}'.format(output_extent))
    logging.debug('  Output cellsize: {}'.format(output_cs))
    logging.debug('  Output UL/LR: {}'.format(output_ullr))

    if mask_flag:
        # Keep tiles that intersect zone polygon
        lat_lon_list = polygon_tiles(zone_polygon_path,
                                     tile_osr,
                                     tile_x,
                                     tile_y,
                                     tile_cs,
                                     tile_buffer=0)
    else:
        # Keep tiles that intersect zone raster extent
        # Project study area extent to DEM tile coordinate system
        tile_extent = gdc.project_extent(output_extent, output_osr, tile_osr)
        logging.debug('Output Extent: {}'.format(tile_extent))

        # Extent needed to select 1x1 degree tiles
        tile_extent.buffer_extent(tile_buffer)
        tile_extent.adjust_to_snap('EXPAND', tile_x, tile_y, tile_cs)
        logging.debug('Tile Extent: {}'.format(tile_extent))

        # Get list of available tiles that intersect the extent
        lat_lon_list = sorted(
            list(
                set([(lat, -lon) for lon in range(int(tile_extent.xmin),
                                                  int(tile_extent.xmax))
                     for lat in range(int(tile_extent.ymax),
                                      int(tile_extent.ymin), -1)])))

    # Attempt to download the tiles
    logging.debug('Downloading')
    for lat_lon in lat_lon_list:
        logging.info('  {}'.format(lat_lon))
        zip_name = zip_fmt.format(*lat_lon)
        zip_url = site_url + '/' + zip_name
        zip_path = os.path.join(tile_ws, zip_name)
        tile_name = tile_fmt.format(*lat_lon)
        tile_path = os.path.join(tile_ws, tile_name)

        logging.debug(zip_url)
        logging.debug(zip_path)
        if not os.path.isfile(tile_path) or overwrite_flag:
            try:
                urllib.urlretrieve(zip_url, zip_path)
                zip_f = zipfile.ZipFile(zip_path)
                zip_f.extract(tile_name, tile_ws)
                zip_f.close()
            except IOError:
                logging.debug('  IOError, skipping')
        try:
            os.remove(zip_path)
        except:
            pass
コード例 #5
0
def polygon_tiles(input_path,
                  tile_osr=gdc.epsg_osr(4269),
                  tile_x=0,
                  tile_y=0,
                  tile_cs=1,
                  tile_buffer=0.5):
    """"""
    lat_lon_list = []
    shp_driver = ogr.GetDriverByName('ESRI Shapefile')
    input_ds = shp_driver.Open(input_path, 0)
    input_layer = input_ds.GetLayer()
    input_osr = input_layer.GetSpatialRef()
    input_ftr = input_layer.GetNextFeature()
    while input_ftr:
        input_fid = input_ftr.GetFID()
        logging.debug('  {0}'.format(input_fid))
        input_geom = input_ftr.GetGeometryRef()

        # This finds the tiles that intersect the extent of each feature
        input_extent = gdc.extent(input_geom.GetEnvelope())
        input_extent = input_extent.ogrenv_swap()
        logging.debug('  Feature Extent: {}'.format(input_extent))

        # Project feature extent to the DEM tile coordinate system
        tile_extent = gdc.project_extent(input_extent, input_osr, tile_osr)
        logging.debug('  Feature Extent: {}'.format(tile_extent))

        # Extent needed to select 1x1 degree tiles
        tile_extent.buffer_extent(tile_buffer)
        tile_extent.adjust_to_snap('EXPAND', tile_x, tile_y, tile_cs)
        logging.debug('  Tile Extent: {}'.format(tile_extent))

        # Get list of available tiles that intersect the extent
        lat_lon_list.extend([
            (lat, -lon)
            for lon in range(int(tile_extent.xmin), int(tile_extent.xmax))
            for lat in range(int(tile_extent.ymax), int(tile_extent.ymin), -1)
        ])
        del input_extent, tile_extent

        # # This finds the tiles that intersect the geometry of each feature
        # # Project the feature geometry to the DEM tile coordinate system
        # output_geom = input_geom.Clone()
        # output_geom.Transform(tx)
        # output_geom = output_geom.Buffer(tile_buffer)
        # logging.debug('  Geometry type: {}'.format(output_geom.GetGeometryName()))
        #
        # # Compute the upper left tile coordinate for each feature vertex
        # output_json = json.loads(output_geom.ExportToJson())
        # # DEADBEEF - Add a point adjust_to_snap method
        # if output_geom.GetGeometryName() == 'POLYGON':
        #     _list = sorted(list(set([
        #        (int(math.ceil((pnt[1] - tile_y) / tile_cs) * tile_cs + tile_y),
        #         -int(math.floor((pnt[0] - tile_x) / tile_cs) * tile_cs + tile_x))
        #        for ring in output_json['coordinates']
        #        for pnt in ring])))
        # elif output_geom.GetGeometryName() == 'MULTIPOLYGON':
        #     _list = sorted(list(set([
        #        (int(math.ceil((pnt[1] - tile_y) / tile_cs) * tile_cs + tile_y),
        #         -int(math.floor((pnt[0] - tile_x) / tile_cs) * tile_cs + tile_x))
        #        for poly in output_json['coordinates']
        #        for ring in poly
        #        for pnt in ring])))
        # else:
        #     .error('Invalid geometry type')
        #     .exit()
        # lat_lon_list.extend(output_list)
        # del output_geom, output_list

        # Cleanup
        input_geom = None
        del input_fid, input_geom
        input_ftr = input_layer.GetNextFeature()
    del input_ds
    return sorted(list(set(lat_lon_list)))
コード例 #6
0
def main(gis_ws,
         tile_ws,
         dem_cs,
         overwrite_flag=False,
         pyramids_flag=False,
         stats_flag=False):
    """Merge, project, and clip NED tiles

    Args:
        gis_ws (str): Folder/workspace path of the GIS data for the project
        tile_ws (str): Folder/workspace path of the DEM tiles
        dem_cs (int): DEM cellsize (10 or 30m)
        overwrite_flag (bool): If True, overwrite existing files
        pyramids_flag (bool): If True, build pyramids/overviews
            for the output rasters
        stats_flag (bool): If True, compute statistics for the output rasters

    Returns:
        None
    """
    logging.info('\nPrepare DEM tiles')

    # Inputs
    output_units = 'METERS'
    dem_ws = os.path.join(gis_ws, 'dem')

    scratch_ws = os.path.join(gis_ws, 'scratch')
    zone_raster_path = os.path.join(scratch_ws, 'zone_raster.img')

    # Use 1 degree snap point and "cellsize" to get 1x1 degree tiles
    tile_osr = gdc.epsg_osr(4269)
    tile_buffer = 0.5
    tile_x, tile_y, tile_cs = 0, 0, 1

    # Input error checking
    if not os.path.isdir(gis_ws):
        logging.error(('\nERROR: The GIS workspace {} ' +
                       'does not exist').format(gis_ws))
        sys.exit()
    elif not os.path.isdir(tile_ws):
        logging.error(('\nERROR: The DEM tile workspace {} ' +
                       'does not exist').format(tile_ws))
        sys.exit()
    elif not os.path.isfile(zone_raster_path):
        logging.error(('\nERROR: The zone raster {} does not exist' +
                       '\n  Try re-running "build_study_area_raster.py"'
                       ).format(zone_raster_path))
        sys.exit()
    elif output_units not in ['FEET', 'METERS']:
        logging.error('\nERROR: The output units must be FEET or METERS\n')
        sys.exit()
    logging.info('\nGIS Workspace:   {}'.format(gis_ws))
    logging.info('DEM Workspace:   {}'.format(dem_ws))
    logging.info('Tile Workspace:  {}\n'.format(tile_ws))

    # Input folder/files
    if dem_cs == 10:
        tile_fmt = 'imgn{0:02d}w{1:03d}_13.img'
    elif dem_cs == 30:
        tile_fmt = 'imgn{0:02d}w{1:03d}_1.img'

    # Output folder/files
    if not os.path.isdir(dem_ws):
        os.makedirs(dem_ws)

    # Output file names
    dem_fmt = 'ned_{0}m{1}.img'
    # dem_gcs = dem_fmt.format(dem_cs, '_nad83_meters')
    # dem_feet = dem_fmt.format(dem_cs, '_nad83_feet')
    # dem_proj = dem_fmt.format(dem_cs, '_albers')
    # dem_hs = dem_fmt.format(dem_cs, '_hs')
    dem_gcs_path = os.path.join(dem_ws, dem_fmt.format(dem_cs,
                                                       '_nad83_meters'))
    dem_feet_path = os.path.join(dem_ws, dem_fmt.format(dem_cs, '_nad83_feet'))
    dem_proj_path = os.path.join(dem_ws, dem_fmt.format(dem_cs, '_albers'))
    dem_hs_path = os.path.join(dem_ws, dem_fmt.format(dem_cs, '_hs'))

    #
    f32_nodata = float(np.finfo(np.float32).min)

    if pyramids_flag:
        levels = '2 4 8 16 32 64 128'
        # gdal.SetConfigOption('USE_RRD', 'YES')
        # gdal.SetConfigOption('HFA_USE_RRD', 'YES')

    # Reference all output rasters zone raster
    zone_raster_ds = gdal.Open(zone_raster_path)
    output_osr = gdc.raster_ds_osr(zone_raster_ds)
    output_wkt = gdc.raster_ds_proj(zone_raster_ds)
    output_cs = gdc.raster_ds_cellsize(zone_raster_ds)[0]
    output_x, output_y = gdc.raster_ds_origin(zone_raster_ds)
    output_extent = gdc.raster_ds_extent(zone_raster_ds)
    zone_raster_ds = None
    logging.debug('\nStudy area properties')
    logging.debug('  Output OSR: {}'.format(output_osr))
    logging.debug('  Output Extent: {}'.format(output_extent))
    logging.debug('  Output cellsize: {}'.format(output_cs))

    # Project study area extent to DEM tile coordinate system
    tile_extent = gdc.project_extent(output_extent, output_osr, tile_osr)
    logging.debug('Output Extent: {}'.format(tile_extent))

    # Extent needed to select 1x1 degree tiles
    tile_extent.buffer_extent(tile_buffer)
    tile_extent.adjust_to_snap('EXPAND', tile_x, tile_y, tile_cs)
    logging.debug('Tile Extent: {}'.format(tile_extent))

    # Get list of available tiles that intersect the extent
    input_path_list = sorted(
        list(
            set([
                tile_fmt.format(lat, -lon)
                # os.path.join(tile_ws, tile_fmt.format(lat, -lon))
                for lon in range(int(tile_extent.xmin), int(tile_extent.xmax))
                for lat in range(int(tile_extent.ymax), int(
                    tile_extent.ymin), -1) if os.path.isfile(
                        os.path.join(tile_ws, tile_fmt.format(lat, -lon)))
            ])))
    logging.debug('Tiles')
    # for input_path in input_path_list:
    #     .debug('  {}'.format(input_path))

    # Calculate using GDAL utilities
    if input_path_list:
        logging.info('Merging tiles')
        if os.path.isfile(dem_gcs_path) and overwrite_flag:
            util.remove_file(dem_gcs_path)
            # subprocess.call(
            #     'gdalmanage', 'delete', '-f', 'HFA', dem_gcs_path])
        if not os.path.isfile(dem_gcs_path):
            # gdal_merge.py was only working if shell=True
            # It would also work to add the scripts folder to the path (in Pythong)
            # Or the scripts folder could be added to the system PYTHONPATH?
            args_list = [
                'python', '{}\scripts\gdal_merge.py'.format(
                    sys.exec_prefix), '-o', dem_gcs_path, '-of', 'HFA', '-co',
                'COMPRESSED=YES', '-a_nodata',
                str(f32_nodata)
            ] + input_path_list
            logging.debug(args_list)
            logging.debug('command length: {}'.format(len(
                ' '.join(args_list))))
            subprocess.call(args_list, cwd=tile_ws)
            # subprocess.call(
            #     'set', 'GDAL_DATA={}\Lib\site-packages\osgeo\data\gdal'.format(sys.exec_prefix)],
            #     =True)
            # subprocess.call(
            #     'gdal_merge.py', '-o', dem_gcs_path, '-of', 'HFA',
            #     '-co', 'COMPRESSED=YES', '-a_nodata',
            #     str(f32_nodata)] + input_path_list,
            #     =True)

    # Convert DEM from meters to feet
    if output_units == 'FEET':
        # DEADBEEF - This won't run when called through subprocess?
        # subprocess.call(
        #     'gdal_calc.py', '-A', dem_gcs_path,
        #     '--outfile={}'.format(dem_feet_path), '--calc="0.3048*A"',
        #     '--format', 'HFA', '--co', 'COMPRESSED=YES',
        #     '--NoDataValue={}'.format(str(f32_nodata)),
        #     '--type', 'Float32', '--overwrite'],
        #     =dem_ws, shell=True)
        # dem_gcs_path = dem_feet_path
        # Scale the values using custom function
        m2ft_func(dem_gcs_path)

    if os.path.isfile(dem_proj_path) and overwrite_flag:
        subprocess.call(['gdalmanage', 'delete', '-f', 'HFA', dem_proj_path])
    if os.path.isfile(dem_hs_path) and overwrite_flag:
        subprocess.call(['gdalmanage', 'delete', '-f', 'HFA', dem_hs_path])

    if (not os.path.isfile(dem_proj_path) and os.path.isfile(dem_gcs_path)):
        subprocess.call([
            'gdalwarp', '-r', 'bilinear', '-tr',
            str(output_cs),
            str(output_cs), '-s_srs', 'EPSG:4269', '-t_srs', output_wkt, '-ot',
            'Float32'
        ] + ['-te'] + str(output_extent).split() +
                        # ['-srcnodata', 'None', '-dstnodata', str(f32_nodata),
                        [
                            '-of', 'HFA', '-co', 'COMPRESSED=YES',
                            '-overwrite', '-multi', '-wm', '1024', '-wo',
                            'NUM_THREADS=ALL_CPUS', dem_gcs_path, dem_proj_path
                        ])
    if (not os.path.isfile(dem_hs_path) and os.path.isfile(dem_proj_path)):
        subprocess.call([
            'gdaldem', 'hillshade', dem_proj_path, dem_hs_path, '-of', 'HFA',
            '-co', 'COMPRESSED=YES'
        ])

    if stats_flag:
        logging.info('Computing statistics')
        if os.path.isfile(dem_proj_path):
            logging.debug('  {}'.format(dem_proj_path))
            subprocess.call(['gdalinfo', '-stats', '-nomd', dem_proj_path])
        if os.path.isfile(dem_hs_path):
            logging.debug('  {}'.format(dem_hs_path))
            subprocess.call(['gdalinfo', '-stats', '-nomd', dem_hs_path])

    if pyramids_flag:
        logging.info('\nBuilding pyramids')
        if os.path.isfile(dem_proj_path):
            logging.debug('  {}'.format(dem_proj_path))
            subprocess.call(['gdaladdo', '-ro', dem_proj_path] +
                            levels.split())
        if os.path.isfile(dem_hs_path):
            logging.debug('  {}'.format(dem_hs_path))
            subprocess.call(['gdaladdo', '-ro', dem_hs_path] + levels.split())
        # subprocess.call(
        #     'gdaladdo', '-ro', '--config', 'USE_RRD', 'YES',
        #     '--config', 'HFA_USE_RRD', 'YES', dem_proj_path] + levels.split()])
        # subprocess.call(
        #     'gdaladdo', '-ro', '--config', 'USE_RRD', 'YES',
        #     '--config', 'HFA_USE_RRD', 'YES', dem_hs_path] + levels.split()])

    if os.path.isfile(os.path.join(dem_ws, dem_gcs_path)):
        subprocess.call(['gdalmanage', 'delete', '-f', 'HFA', dem_gcs_path])
コード例 #7
0
def zonal_stats(ini_path=None, overwrite_flag=False):
    """Offline Zonal Stats

    Args:
        ini_path (str):
        overwrite_flag (bool): if True, overwrite existing files

    Returns:
        None
    """
    logging.info('\nCompute Offline Zonal Stats')

    landsat_flag = True
    gridmet_flag = True
    pdsi_flag = False

    landsat_images_folder = 'landsat'
    landsat_tables_folder = 'landsat_tables'
    gridmet_images_folder = 'gridmet_monthly'

    # Regular expression to pull out Landsat scene_id
    landsat_image_re = re.compile('^\d{8}_\d{3}_\w+.\w+.tif$')
    gridmet_image_re = re.compile('^\d{6}_gridmet.(eto|ppt).tif$')

    # For now, hardcode snap, cellsize and spatial reference
    logging.info('\nHardcoding zone/output cellsize and snap')
    zone_cs = 30
    zone_x, zone_y = 15, 15
    logging.debug('  Snap: {} {}'.format(zone_x, zone_y))
    logging.debug('  Cellsize: {}'.format(zone_cs))

    logging.info('Hardcoding Landsat snap, cellsize and spatial reference')
    landsat_x, landsat_y = 15, 15
    landsat_cs = 30
    landsat_osr = gdc.epsg_osr(32611)
    logging.debug('  Snap: {} {}'.format(landsat_x, landsat_y))
    logging.debug('  Cellsize: {}'.format(landsat_cs))
    logging.debug('  OSR: {}'.format(landsat_osr))

    logging.info('Hardcoding GRIDMET snap, cellsize and spatial reference')
    gridmet_x, gridmet_y = -124.79299639209513, 49.41685579737572
    gridmet_cs = 0.041666001963701
    # gridmet_cs = [0.041666001963701, 0.041666001489718]
    # gridmet_x, gridmet_y = -124.79166666666666666667, 25.04166666666666666667
    # gridmet_cs = 1. / 24
    gridmet_osr = gdc.epsg_osr(4326)
    # gridmet_osr = gdc.epsg_osr(4269)
    logging.debug('  Snap: {} {}'.format(gridmet_x, gridmet_y))
    logging.debug('  Cellsize: {}'.format(gridmet_cs))
    logging.debug('  OSR: {}'.format(gridmet_osr))

    landsat_daily_fields = [
        'DATE', 'SCENE_ID', 'LANDSAT', 'PATH', 'ROW',
        'YEAR', 'MONTH', 'DAY', 'DOY',
        'PIXEL_COUNT', 'FMASK_COUNT', 'DATA_COUNT', 'CLOUD_SCORE',
        'TS', 'ALBEDO_SUR', 'NDVI_TOA', 'NDVI_SUR', 'EVI_SUR',
        'NDWI_GREEN_NIR_SUR', 'NDWI_GREEN_SWIR1_SUR', 'NDWI_NIR_SWIR1_SUR',
        # 'NDWI_GREEN_NIR_TOA', 'NDWI_GREEN_SWIR1_TOA', 'NDWI_NIR_SWIR1_TOA',
        # 'NDWI_SWIR1_GREEN_TOA', 'NDWI_SWIR1_GREEN_SUR',
        # 'NDWI_TOA', 'NDWI_SUR',
        'TC_BRIGHT', 'TC_GREEN', 'TC_WET']
    # gridmet_daily_fields = [
    #     'DATE', 'YEAR', 'MONTH', 'DAY', 'DOY', 'WATER_YEAR', 'ETO', 'PPT']
    gridmet_monthly_fields = [
        'DATE', 'YEAR', 'MONTH', 'WATER_YEAR', 'ETO', 'PPT']
    pdsi_dekad_fields = [
        'DATE', 'YEAR', 'MONTH', 'DAY', 'DOY', 'PDSI']

    landsat_int_fields = [
        'YEAR', 'MONTH', 'DAY', 'DOY',
        'PIXEL_COUNT', 'FMASK_COUNT', 'CLOUD_SCORE']
    gridmet_int_fields = ['YEAR', 'MONTH', 'WATER_YEAR']

    # To figure out which Landsat and path,
    # Compare date to reference dates and look for even multiples of 16
    ref_dates = {
        datetime.datetime(1985, 3, 31): ['LT5', '039'],
        datetime.datetime(1985, 4, 7): ['LT5', '040'],
        datetime.datetime(1999, 7, 4): ['LE7', '039'],
        datetime.datetime(1999, 7, 27): ['LE7', '040'],
        datetime.datetime(2013, 4, 13): ['LC8', '039'],
        datetime.datetime(2013, 4, 20): ['LC8', '040']
        # datetime.datetime(1984, , ): ['LT4', '039'],
        # datetime.datetime(1984, , ): ['LT4', '040'],
    }

    # Open config file
    config = ConfigParser.ConfigParser()
    try:
        config.readfp(open(ini_path))
    except:
        logging.error(('\nERROR: Input file could not be read, ' +
                       'is not an input file, or does not exist\n' +
                       'ERROR: ini_path = {}\n').format(ini_path))
        sys.exit()
    logging.debug('\nReading Input File')

    # Read in config file
    zone_input_ws = config.get('INPUTS', 'zone_input_ws')
    zone_filename = config.get('INPUTS', 'zone_filename')
    zone_field = config.get('INPUTS', 'zone_field')
    zone_path = os.path.join(zone_input_ws, zone_filename)

    landsat_daily_fields.insert(0, zone_field)
    # gridmet_daily_fields.insert(0, zone_field)
    gridmet_monthly_fields.insert(0, zone_field)
    pdsi_dekad_fields.insert(0, zone_field)

    images_ws = config.get('INPUTS', 'images_ws')

    # Build and check file paths
    if not os.path.isdir(zone_input_ws):
        logging.error(
            '\nERROR: The zone workspace does not exist, exiting\n  {}'.format(
                zone_input_ws))
        sys.exit()
    elif not os.path.isfile(zone_path):
        logging.error(
            '\nERROR: The zone shapefile does not exist, exiting\n  {}'.format(
                zone_path))
        sys.exit()
    elif not os.path.isdir(images_ws):
        logging.error(
            '\nERROR: The image workspace does not exist, exiting\n  {}'.format(
                images_ws))
        sys.exit()

    # Final output folder
    try:
        output_ws = config.get('INPUTS', 'output_ws')
        if not os.path.isdir(output_ws):
            os.makedirs(output_ws)
    except:
        output_ws = os.getcwd()
        logging.debug('  Defaulting output workspace to {}'.format(output_ws))

    # Start/end year
    try:
        start_year = int(config.get('INPUTS', 'start_year'))
    except:
        start_year = 1984
        logging.debug('  Defaulting start_year={}'.format(start_year))
    try:
        end_year = int(config.get('INPUTS', 'end_year'))
    except:
        end_year = datetime.datetime.today().year
        logging.debug('  Defaulting end year to {}'.format(end_year))
    if start_year and end_year and end_year < start_year:
        logging.error(
            '\nERROR: End year must be >= start year, exiting')
        sys.exit()
    default_end_year = datetime.datetime.today().year + 1
    if (start_year and start_year not in range(1984, default_end_year) or
        end_year and end_year not in range(1984, default_end_year)):
        logging.error(
            ('\nERROR: Year must be an integer from 1984-{}, ' +
             'exiting').format(default_end_year - 1))
        sys.exit()

    # Start/end month
    try:
        start_month = int(config.get('INPUTS', 'start_month'))
    except:
        start_month = None
        logging.debug('  Defaulting start_month=None')
    try:
        end_month = int(config.get('INPUTS', 'end_month'))
    except:
        end_month = None
        logging.debug('  Defaulting end_month=None')
    if start_month and start_month not in range(1, 13):
        logging.error(
            '\nERROR: Start month must be an integer from 1-12, exiting')
        sys.exit()
    elif end_month and end_month not in range(1, 13):
        logging.error(
            '\nERROR: End month must be an integer from 1-12, exiting')
        sys.exit()
    month_list = common.wrapped_range(start_month, end_month, 1, 12)

    # Start/end DOY
    try:
        start_doy = int(config.get('INPUTS', 'start_doy'))
    except:
        start_doy = None
        logging.debug('  Defaulting start_doy=None')
    try:
        end_doy = int(config.get('INPUTS', 'end_doy'))
    except:
        end_doy = None
        logging.debug('  Defaulting end_doy=None')
    if end_doy and end_doy > 273:
        logging.error(
            '\nERROR: End DOY must be in the same water year as start DOY, ' +
            'exiting')
        sys.exit()
    if start_doy and start_doy not in range(1, 367):
        logging.error(
            '\nERROR: Start DOY must be an integer from 1-366, exiting')
        sys.exit()
    elif end_doy and end_doy not in range(1, 367):
        logging.error(
            '\nERROR: End DOY must be an integer from 1-366, exiting')
        sys.exit()
    # if end_doy < start_doy:
    #     logging.error(
    #         '\nERROR: End DOY must be >= start DOY')
    #     sys.exit()
    doy_list = common.wrapped_range(start_doy, end_doy, 1, 366)

    # Control which Landsat images are used
    try:
        landsat5_flag = config.getboolean('INPUTS', 'landsat5_flag')
    except:
        landsat5_flag = False
        logging.debug('  Defaulting landsat5_flag=False')
    try:
        landsat4_flag = config.getboolean('INPUTS', 'landsat4_flag')
    except:
        landsat4_flag = False
        logging.debug('  Defaulting landsat4_flag=False')
    try:
        landsat7_flag = config.getboolean('INPUTS', 'landsat7_flag')
    except:
        landsat7_flag = False
        logging.debug('  Defaulting landsat7_flag=False')
    try:
        landsat8_flag = config.getboolean('INPUTS', 'landsat8_flag')
    except:
        landsat8_flag = False
        logging.debug('  Defaulting landsat8_flag=False')

    # Cloudmasking
    try:
        apply_mask_flag = config.getboolean('INPUTS', 'apply_mask_flag')
    except:
        apply_mask_flag = False
        logging.debug('  Defaulting apply_mask_flag=False')

    try:
        acca_flag = config.getboolean('INPUTS', 'acca_flag')
    except:
        acca_flag = False
    try:
        fmask_flag = config.getboolean('INPUTS', 'fmask_flag')
    except:
        fmask_flag = False

    # Intentionally don't apply scene_id skip/keep lists
    # Compute zonal stats for all available images
    # Filter by scene_id when making summary tables
    scene_id_keep_list = []
    scene_id_skip_list = []

    # # Only process specific Landsat scenes
    # try:
    #     scene_id_keep_path = config.get('INPUTS', 'scene_id_keep_path')
    #     with open(scene_id_keep_path) as input_f:
    #         scene_id_keep_list = input_f.readlines()
    #     scene_id_keep_list = [x.strip()[:16] for x in scene_id_keep_list]
    # except IOError:
    #     logging.error('\nFileIO Error: {}'.format(scene_id_keep_path))
    #     sys.exit()
    # except:
    #     scene_id_keep_list = []

    # # Skip specific landsat scenes
    # try:
    #     scene_id_skip_path = config.get('INPUTS', 'scene_id_skip_path')
    #     with open(scene_id_skip_path) as input_f:
    #         scene_id_skip_list = input_f.readlines()
    #     scene_id_skip_list = [x.strip()[:16] for x in scene_id_skip_list]
    # except IOError:
    #     logging.error('\nFileIO Error: {}'.format(scene_id_skip_path))
    #     sys.exit()
    # except:
    #     scene_id_skip_list = []

    # Only process certain Landsat path/rows
    try:
        path_keep_list = list(
            common.parse_int_set(config.get('INPUTS', 'path_keep_list')))
    except:
        path_keep_list = []
    # try:
    #     row_keep_list = list(
    #         common.parse_int_set(config.get('INPUTS', 'row_keep_list')))
    # except:
    #     row_keep_list = []

    # Skip or keep certain FID
    try:
        fid_skip_list = list(
            common.parse_int_set(config.get('INPUTS', 'fid_skip_list')))
    except:
        fid_skip_list = []
    try:
        fid_keep_list = list(
            common.parse_int_set(config.get('INPUTS', 'fid_keep_list')))
    except:
        fid_keep_list = []

    # For now, output projection must be manually set above to match zones
    zone_osr = gdc.feature_path_osr(zone_path)
    zone_proj = gdc.osr_proj(zone_osr)
    logging.info('\nThe zone shapefile must be in a projected coordinate system!')
    logging.info('  Proj4: {}'.format(zone_osr.ExportToProj4()))
    logging.info('{}'.format(zone_osr))


    # Read in zone shapefile
    logging.info('\nRasterizing Zone Shapefile')
    zone_name_dict = dict()
    zone_extent_dict = dict()
    zone_mask_dict = dict()

    # First get FIDs and extents
    zone_ds = ogr.Open(zone_path, 0)
    zone_lyr = zone_ds.GetLayer()
    zone_lyr.ResetReading()
    for zone_ftr in zone_lyr:
        zone_fid = zone_ftr.GetFID()
        if zone_field.upper() == 'FID':
            zone_name_dict[zone_fid] = str(zone_fid)
        else:
            zone_name_dict[zone_fid] = zone_ftr.GetField(zone_field)
        zone_extent = gdc.Extent(
            zone_ftr.GetGeometryRef().GetEnvelope()).ogrenv_swap()
        zone_extent.adjust_to_snap('EXPAND', zone_x, zone_y, zone_cs)
        zone_extent_dict[zone_fid] = list(zone_extent)

    # Rasterize each FID separately
    # The RasterizeLayer function wants a "layer"
    # There might be an easier way to select each feature as a layer
    for zone_fid, zone_extent in sorted(zone_extent_dict.items()):
        logging.debug('FID: {}'.format(zone_fid))
        logging.debug('  Name: {}'.format(zone_name_dict[zone_fid]))
        zone_ds = ogr.Open(zone_path, 0)
        zone_lyr = zone_ds.GetLayer()
        zone_lyr.ResetReading()
        zone_lyr.SetAttributeFilter("{0} = {1}".format('FID', zone_fid))

        zone_extent = gdc.Extent(zone_extent)
        zone_rows, zone_cols = zone_extent.shape(zone_cs)
        logging.debug('  Extent: {}'.format(str(zone_extent)))
        logging.debug('  Rows/Cols: {} {}'.format(zone_rows, zone_cols))

        # zones_lyr.SetAttributeFilter("{0} = {1}".format('FID', zone_fid))

        # Initialize the zone in memory raster
        mem_driver = gdal.GetDriverByName('MEM')
        zone_raster_ds = mem_driver.Create(
            '', zone_cols, zone_rows, 1, gdal.GDT_Byte)
        zone_raster_ds.SetProjection(zone_proj)
        zone_raster_ds.SetGeoTransform(
            gdc.extent_geo(zone_extent, cs=zone_cs))
        zone_band = zone_raster_ds.GetRasterBand(1)
        zone_band.SetNoDataValue(0)

        # Clear the raster before rasterizing
        zone_band.Fill(0)
        gdal.RasterizeLayer(zone_raster_ds, [1], zone_lyr)
        # zones_ftr_ds = None
        zone_array = gdc.raster_ds_to_array(
            zone_raster_ds, return_nodata=False)
        zone_mask = zone_array != 0
        logging.debug('  Pixel Count: {}'.format(np.sum(zone_mask)))
        # logging.debug('  Mask:\n{}'.format(zone_mask))
        # logging.debug('  Array:\n{}'.format(zone_array))
        zone_mask_dict[zone_fid] = zone_mask

        zone_raster_ds = None
        del zone_raster_ds, zone_array, zone_mask
    zone_ds = None
    del zone_ds, zone_lyr



    # Calculate zonal stats for each feature separately
    logging.info('')
    for fid, zone_str in sorted(zone_name_dict.items()):
        if fid_keep_list and fid not in fid_keep_list:
            continue
        elif fid_skip_list and fid in fid_skip_list:
            continue
        logging.info('ZONE: {} (FID: {})'.format(zone_str, fid))

        if not zone_field or zone_field.upper() == 'FID':
            zone_str = 'fid_' + zone_str
        else:
            zone_str = zone_str.lower().replace(' ', '_')

        zone_output_ws = os.path.join(output_ws, zone_str)
        if not os.path.isdir(zone_output_ws):
            os.makedirs(zone_output_ws)

        zone_extent = gdc.Extent(zone_extent_dict[fid])
        zone_mask = zone_mask_dict[fid]
        # logging.debug('  Extent: {}'.format(zone_extent))


        if landsat_flag:
            logging.info('  Landsat')

            landsat_output_ws = os.path.join(
                zone_output_ws, landsat_tables_folder)
            if not os.path.isdir(landsat_output_ws):
                os.makedirs(landsat_output_ws)
            logging.debug('  {}'.format(landsat_output_ws))

            # Project the zone extent to the image OSR
            clip_extent = gdc.project_extent(
                zone_extent, zone_osr, landsat_osr, zone_cs)
            # logging.debug('  Extent: {}'.format(clip_extent))
            clip_extent.adjust_to_snap('EXPAND', landsat_x, landsat_y, landsat_cs)
            logging.debug('  Extent: {}'.format(clip_extent))

            # Process date range by year
            for year in xrange(start_year, end_year + 1):
                images_year_ws = os.path.join(
                    images_ws, landsat_images_folder, str(year))
                if not os.path.isdir(images_year_ws):
                    logging.debug(
                        '  Landsat year folder doesn\'t exist, skipping\n    {}'.format(
                            images_year_ws))
                    continue
                else:
                    logging.info('  Year: {}'.format(year))

                # Create an empty dataframe
                output_path = os.path.join(
                    landsat_output_ws, '{}_landsat_{}.csv'.format(zone_str, year))
                if os.path.isfile(output_path):
                    if overwrite_flag:
                        logging.debug(
                            '  Output CSV already exists, removing\n    {}'.format(
                                output_path))
                        os.remove(output_path)
                    else:
                        logging.debug(
                            '  Output CSV already exists, skipping\n    {}'.format(
                                output_path))
                        continue
                output_df = pd.DataFrame(columns=landsat_daily_fields)
                output_df[landsat_int_fields] = output_df[
                    landsat_int_fields].astype(int)

                # Get list of all images
                year_image_list = [
                    image for image in os.listdir(images_year_ws)
                    if landsat_image_re.match(image)]
                # Get list of all unique dates (multiple images per date)
                year_dt_list = sorted(set([
                    datetime.datetime.strptime(image[:8], '%Y%m%d')
                    for image in year_image_list]))
                # Filter date lists if necessary
                if month_list:
                    year_dt_list = [
                        image_dt for image_dt in year_dt_list
                        if image_dt.month in month_list]
                if doy_list:
                    year_dt_list = [
                        image_dt for image_dt in year_dt_list
                        if int(image_dt.strftime('%j')) in doy_list]

                output_list = []
                for image_dt in year_dt_list:
                    image_str = image_dt.date().isoformat()
                    logging.debug('{}'.format(image_dt.date()))

                    # Get the list of available images
                    image_list = [
                        image for image in year_image_list
                        if image_dt.strftime('%Y%m%d') in image]
                    # This conditional is probably impossible
                    if not image_list:
                        logging.debug('    No images, skipping date')
                        continue

                    # Use date offsets to determine the Landsat and Path
                    ref_match = [
                        lp for ref_dt, lp in ref_dates.items()
                        if (((ref_dt - image_dt).days % 16 == 0) and
                            ((lp[0].upper() == 'LT5' and image_dt.year < 2012) or
                             (lp[0].upper() == 'LC8' and image_dt.year > 2012) or
                             (lp[0].upper() == 'LE7')))]
                    if ref_match:
                        landsat, path = ref_match[0]
                    else:
                        landsat, path = 'XXX', '000'
                    # Get Landsat type from first image in list
                    # image_dict['LANDSAT'] = image_list[0].split('.')[0].split('_')[2]
                    image_name_fmt = '{}_{}.{}.tif'.format(
                        image_dt.strftime('%Y%m%d_%j'), landsat.lower(), '{}')

                    if not landsat4_flag and landsat.upper() == 'LT4':
                        logging.debug('    Landsat 4, skipping image')
                        continue
                    elif not landsat5_flag and landsat.upper() == 'LT5':
                        logging.debug('    Landsat 5, skipping image')
                        continue
                    elif not landsat7_flag and landsat.upper() == 'LE7':
                        logging.debug('    Landsat 7, skipping image')
                        continue
                    elif not landsat8_flag and landsat.upper() == 'LC8':
                        logging.debug('    Landsat 8, skipping image')
                        continue

                    # Load the "mask" image first if it is available
                    # The zone_mask could be applied to the mask_array here
                    #   or below where it is used to select from the image_array
                    mask_name = image_name_fmt.format('mask')
                    mask_path = os.path.join(images_year_ws, mask_name)
                    if apply_mask_flag and mask_name in image_list:
                        logging.info('    Applying mask raster: {}'.format(
                            mask_path))
                        mask_input_array, mask_nodata = gdc.raster_to_array(
                            mask_path, band=1, mask_extent=clip_extent,
                            fill_value=None, return_nodata=True)
                        mask_array = gdc.project_array(
                            mask_input_array, gdal.GRA_NearestNeighbour,
                            landsat_osr, landsat_cs, clip_extent,
                            zone_osr, zone_cs, zone_extent,
                            output_nodata=None)
                        # Assume 0 and nodata indicate unmasked pixels
                        # All other pixels are "masked"
                        mask_array = (mask_array == 0) | (mask_array == mask_nodata)
                        # Assume 0 and nodata indicate masked pixels
                        # mask_array = (mask_array != 0) & (mask_array != mask_nodata)
                        if not np.any(mask_array):
                            logging.info('    No unmasked values')
                    else:
                        mask_array = np.ones(zone_mask.shape, dtype=np.bool)

                    # Save date specific properties
                    image_dict = dict()

                    # Get Fmask and Cloud score separately from other bands
                    # FMask
                    image_name = image_name_fmt.format('fmask')
                    image_path = os.path.join(images_year_ws, image_name)
                    if not os.path.isfile(image_path):
                        logging.error(
                            '  Image {} does not exist, skipping date'.format(
                                image_name))
                        continue
                    image_input_array, image_nodata = gdc.raster_to_array(
                        image_path, band=1, mask_extent=clip_extent,
                        fill_value=None, return_nodata=True)
                    fmask_array = gdc.project_array(
                        image_input_array, gdal.GRA_NearestNeighbour,
                        landsat_osr, landsat_cs, clip_extent,
                        zone_osr, zone_cs, zone_extent,
                        output_nodata=None)
                    fmask_mask = np.copy(zone_mask) & mask_array
                    if fmask_array.dtype in [np.float32, np.float64]:
                        fmask_mask &= np.isfinite(fmask_array)
                    else:
                        fmask_mask &= fmask_array != image_nodata
                    if not np.any(fmask_mask):
                        logging.debug('    Empty Fmask array, skipping')
                        continue
                    # Convert Fmask array into a mask (1 is cloudy, 0 is clear)
                    fmask_array = (fmask_array > 1.5) & (fmask_array < 4.5)
                    image_dict['FMASK_COUNT'] = int(np.sum(fmask_array[fmask_mask]))
                    image_dict['PIXEL_COUNT'] = int(np.sum(fmask_mask))
                    # image_dict['PIXEL_COUNT'] = int(np.sum(fmask_mask))
                    image_dict['MASK_COUNT'] = int(np.sum(mask_array))

                    # Cloud Score
                    image_name = image_name_fmt.format('cloud_score')
                    image_path = os.path.join(images_year_ws, image_name)
                    image_input_array, image_nodata = gdc.raster_to_array(
                        image_path, band=1, mask_extent=clip_extent,
                        fill_value=None, return_nodata=True)
                    cloud_array = gdc.project_array(
                        image_input_array, gdal.GRA_NearestNeighbour,
                        landsat_osr, landsat_cs, clip_extent,
                        zone_osr, zone_cs, zone_extent,
                        output_nodata=None)
                    cloud_mask = np.copy(zone_mask) & mask_array
                    if cloud_array.dtype in [np.float32, np.float64]:
                        cloud_mask &= np.isfinite(cloud_array)
                    else:
                        cloud_mask &= cloud_array != image_nodata
                    if not np.any(cloud_mask):
                        logging.debug('    Empty Cloud Score array, skipping')
                        continue
                    image_dict['CLOUD_SCORE'] = float(np.mean(cloud_array[cloud_mask]))


                    # Workflow
                    zs_list = [
                        ['ts', 1, 'TS'],
                        ['albedo_sur', 1, 'ALBEDO_SUR'],
                        ['ndvi_toa', 1, 'NDVI_TOA'],
                        ['ndvi_sur', 1, 'NDVI_SUR'],
                        ['evi_sur', 1, 'EVI_SUR'],
                        ['ndwi_green_nir_sur', 1, 'NDWI_GREEN_NIR_SUR'],
                        ['ndwi_green_swir1_sur', 1, 'NDWI_GREEN_SWIR1_SUR'],
                        ['ndwi_nir_swir1_sur', 1, 'NDWI_NIR_SWIR1_SUR'],
                        ['tasseled_cap', 1, 'TC_BRIGHT'],
                        ['tasseled_cap', 2, 'TC_GREEN'],
                        ['tasseled_cap', 3, 'TC_WET']
                    ]
                    for band_name, band_num, field in zs_list:
                        image_name = image_name_fmt.format(band_name)
                        logging.debug('  {} {}'.format(image_name, field))
                        if image_name not in image_list:
                            logging.debug('    Image doesn\'t exist, skipping')
                            continue
                        image_path = os.path.join(images_year_ws, image_name)
                        # logging.debug('  {}'.format(image_path))

                        image_input_array, image_nodata = gdc.raster_to_array(
                            image_path, band=band_num, mask_extent=clip_extent,
                            fill_value=None, return_nodata=True)

                        # GRA_NearestNeighbour, GRA_Bilinear, GRA_Cubic,
                        #   GRA_CubicSpline
                        image_array = gdc.project_array(
                            image_input_array, gdal.GRA_NearestNeighbour,
                            landsat_osr, landsat_cs, clip_extent,
                            zone_osr, zone_cs, zone_extent,
                            output_nodata=None)
                        image_mask = np.copy(zone_mask) & mask_array
                        if image_array.dtype in [np.float32, np.float64]:
                            image_mask &= np.isfinite(image_array)
                        else:
                            image_mask &= image_array != image_nodata
                        del image_input_array

                        if fmask_flag:
                            # Fmask array was converted into a mask
                            # 1 for cloud, 0 for clear
                            image_mask &= (fmask_array == 0)
                        if acca_flag:
                            image_mask &= (cloud_array < 50)

                        # Skip fully masked zones
                        # This would not work for FMASK and CLOUD_SCORE if we
                        #   weren't using nearest neighbor for resampling
                        if not np.any(image_mask):
                            logging.debug('    Empty array, skipping')
                            continue

                        image_dict[field] = float(np.mean(
                            image_array[image_mask]))

                        # Should check "first" image instead of Ts specifically
                        if band_name == 'ts':
                            image_dict['DATA_COUNT'] = int(np.sum(image_mask))

                        del image_array, image_mask

                    if not image_dict:
                        logging.debug(
                            '    {} - no image data in zone, skipping'.format(
                                image_str))
                        continue

                    # Save date specific properties
                    # Change fid zone strings back to integer values
                    if zone_str.startswith('fid_'):
                        image_dict[zone_field] = int(zone_str[4:])
                    else:
                        image_dict[zone_field] = zone_str
                    image_dict['DATE'] = image_str
                    image_dict['LANDSAT'] = landsat.upper()
                    image_dict['PATH'] = path
                    image_dict['ROW'] = '000'
                    image_dict['SCENE_ID'] = '{}{}{}{}'.format(
                        image_dict['LANDSAT'], image_dict['PATH'],
                        image_dict['ROW'], image_dt.strftime('%Y%j'))
                    image_dict['YEAR'] = image_dt.year
                    image_dict['MONTH'] = image_dt.month
                    image_dict['DAY'] = image_dt.day
                    image_dict['DOY'] = int(image_dt.strftime('%j'))
                    # image_dict['PIXEL_COUNT'] = int(np.sum(zone_mask & mask_array))

                    # Save each row to a list
                    output_list.append(image_dict)

                # Append all rows for the year to a dataframe
                if not output_list:
                    logging.debug('    Empty output list, skipping')
                    continue
                output_df = output_df.append(output_list, ignore_index=True)
                output_df.sort_values(by=['DATE'], inplace=True)
                logging.debug('  {}'.format(output_path))
                output_df.to_csv(output_path, index=False, columns=landsat_daily_fields)


            # Combine/merge annual files into a single CSV
            logging.debug('\n  Merging annual Landsat CSV files')
            output_df = None
            for year in xrange(start_year, end_year + 1):
                # logging.debug('    {}'.format(year))
                input_path = os.path.join(
                    landsat_output_ws, '{}_landsat_{}.csv'.format(zone_str, year))
                try:
                    input_df = pd.read_csv(input_path)
                except:
                    continue
                try:
                    output_df = output_df.append(input_df)
                except:
                    output_df = input_df.copy()

            if output_df is not None and not output_df.empty:
                output_path = os.path.join(
                    zone_output_ws,
                    '{}_landsat_daily.csv'.format(zone_str))
                logging.debug('  {}'.format(output_path))
                output_df.sort_values(by=['DATE', 'ROW'], inplace=True)
                output_df.to_csv(
                    output_path, index=False, columns=landsat_daily_fields)


        if gridmet_flag:
            logging.info('  GRIDMET ETo/PPT')

            # Project the zone extent to the image OSR
            clip_extent = gdc.project_extent(
                zone_extent, zone_osr, gridmet_osr, zone_cs)
            logging.debug('  Extent: {}'.format(clip_extent))
            # clip_extent.buffer_extent(gridmet_cs)
            # logging.debug('  Extent: {}'.format(clip_extent))
            clip_extent.adjust_to_snap('EXPAND', gridmet_x, gridmet_y, gridmet_cs)
            logging.debug('  Extent: {}'.format(clip_extent))

            gridmet_images_ws = os.path.join(images_ws, gridmet_images_folder)
            if not os.path.isdir(gridmet_images_ws):
                logging.debug(
                    '  GRIDMET folder doesn\'t exist, skipping\n    {}'.format(
                        gridmet_images_ws))
                continue
            else:
                logging.info('  {}'.format(gridmet_images_ws))

            # Create an empty dataframe
            output_path = os.path.join(
                zone_output_ws,
                '{}_gridmet_monthly.csv'.format(zone_str))
            if os.path.isfile(output_path):
                if overwrite_flag:
                    logging.debug(
                        '  Output CSV already exists, removing\n    {}'.format(
                            output_path))
                    os.remove(output_path)
                else:
                    logging.debug(
                        '  Output CSV already exists, skipping\n    {}'.format(
                            output_path))
                    continue
            output_df = pd.DataFrame(columns=gridmet_monthly_fields)
            output_df[gridmet_int_fields] = output_df[gridmet_int_fields].astype(int)

            # Get list of all images
            image_list = [
                image for image in os.listdir(gridmet_images_ws)
                if gridmet_image_re.match(image)]
            dt_list = sorted(set([
                datetime.datetime(int(image[:4]), int(image[4:6]), 1)
                for image in image_list]))

            output_list = []
            for image_dt in dt_list:
                image_str = image_dt.date().isoformat()
                logging.debug('{}'.format(image_dt.date()))

                image_name_fmt = '{}_gridmet.{}.tif'.format(
                    image_dt.strftime('%Y%m'), '{}')

                # Save date specific properties
                image_dict = dict()

                # Workflow
                zs_list = [
                    ['eto', 'ETO'],
                    ['ppt', 'PPT'],
                ]
                for band_name, field in zs_list:
                    image_name = image_name_fmt.format(band_name)
                    logging.debug('  {} {}'.format(image_name, field))
                    if image_name not in image_list:
                        logging.debug('    Image doesn\'t exist, skipping')
                        continue
                    image_path = os.path.join(gridmet_images_ws, image_name)
                    # logging.debug('  {}'.format(image_path))

                    image_input_array, image_nodata = gdc.raster_to_array(
                        image_path, band=1, mask_extent=clip_extent,
                        fill_value=None, return_nodata=True)

                    # GRA_NearestNeighbour, GRA_Bilinear, GRA_Cubic,
                    #   GRA_CubicSpline
                    image_array = gdc.project_array(
                        image_input_array, gdal.GRA_NearestNeighbour,
                        gridmet_osr, gridmet_cs, clip_extent,
                        zone_osr, zone_cs, zone_extent,
                        output_nodata=None)
                    del image_input_array

                    # Skip fully masked zones
                    if (np.all(np.isnan(image_array)) or
                            np.all(image_array == image_nodata)):
                        logging.debug('    Empty array, skipping')
                        continue

                    image_dict[field] = np.mean(image_array[zone_mask])
                    del image_array

                if not image_dict:
                    logging.debug(
                        '    {} - no image data in zone, skipping'.format(
                            image_str))
                    continue

                # Save date specific properties
                # Change fid zone strings back to integer values
                if zone_str.startswith('fid_'):
                    image_dict[zone_field] = int(zone_str[4:])
                else:
                    image_dict[zone_field] = zone_str
                image_dict['DATE'] = image_str
                image_dict['YEAR'] = image_dt.year
                image_dict['MONTH'] = image_dt.month
                image_dict['WATER_YEAR'] = (image_dt + relativedelta(months=3)).year

                # Save each row to a list
                output_list.append(image_dict)

            # Append all rows for the year to a dataframe
            if not output_list:
                logging.debug('    Empty output list, skipping')
                continue
            output_df = output_df.append(output_list, ignore_index=True)
            output_df.sort_values(by=['DATE'], inplace=True)
            logging.debug('  {}'.format(output_path))
            output_df.to_csv(
                output_path, index=False, columns=gridmet_monthly_fields)


        if pdsi_flag:
            logging.info('  GRIDMET PDSI')
            logging.info('  Not currently implemented')
コード例 #8
0
def main(netcdf_ws=os.getcwd(),
         ancillary_ws=os.getcwd(),
         output_ws=os.getcwd(),
         variables=['prcp'],
         daily_flag=False,
         monthly_flag=True,
         annual_flag=False,
         start_year=1981,
         end_year=2010,
         extent_path=None,
         output_extent=None,
         stats_flag=True,
         overwrite_flag=False):
    """Extract DAYMET temperature

    Args:
        netcdf_ws (str): folder of DAYMET netcdf files
        ancillary_ws (str): folder of ancillary rasters
        output_ws (str): folder of output rasters
        variables (list): DAYMET variables to download
          ('prcp', 'srad', 'vp', 'tmmn', 'tmmx')
          Set as ['all'] to process all variables
        daily_flag (bool): if True, compute daily (DOY) climatologies
        monthly_flag (bool): if True, compute monthly climatologies
        annual_flag (bool): if True, compute annual climatologies
        start_year (int): YYYY
        end_year (int): YYYY
        extent_path (str): filepath a raster defining the output extent
        output_extent (list): decimal degrees values defining output extent
        stats_flag (bool): if True, compute raster statistics.
            Default is True.
        overwrite_flag (bool): if True, overwrite existing files

    Returns:
        None
    """
    logging.info('\nGenerating DAYMET climatologies')

    daily_fmt = 'daymet_{var}_30yr_normal_{doy:03d}.img'
    monthly_fmt = 'daymet_{var}_30yr_normal_{month:02d}.img'
    annual_fmt = 'daymet_{var}_30yr_normal.img'
    # daily_fmt = 'daymet_{var}_normal_{start}_{end}_{doy:03d}.img'
    # monthly_fmt = 'daymet_{var}_normal_{start}_{end}_{month:02d}.img'
    # annual_fmt = 'daymet_{var}_normal_{start}_{end}.img'

    # If a date is not set, process 1981-2010 climatology
    try:
        start_dt = dt.datetime(start_year, 1, 1)
        logging.debug('  Start date: {}'.format(start_dt))
    except:
        start_dt = dt.datetime(1981, 1, 1)
        logging.info('  Start date: {}'.format(start_dt))
    try:
        end_dt = dt.datetime(end_year, 12, 31)
        logging.debug('  End date:   {}'.format(end_dt))
    except:
        end_dt = dt.datetime(2010, 12, 31)
        logging.info('  End date:   {}'.format(end_dt))

    # Get DAYMET spatial reference from an ancillary raster
    mask_raster = os.path.join(ancillary_ws, 'daymet_mask.img')

    daymet_re = re.compile('daymet_v3_(?P<VAR>\w+)_(?P<YEAR>\d{4})_na.nc4$')

    # DAYMET rasters to extract
    var_full_list = ['prcp', 'tmmn', 'tmmx']
    # data_full_list = ['prcp', 'srad', 'vp', 'tmmn', 'tmmx']
    if not variables:
        logging.error('\nERROR: variables parameter is empty\n')
        sys.exit()
    elif type(variables) is not list:
        # DEADBEEF - I could try converting comma separated strings to lists?
        logging.warning('\nERROR: variables parameter must be a list\n')
        sys.exit()
    elif 'all' in variables:
        logging.error('\nDownloading all variables\n  {}'.format(
            ','.join(var_full_list)))
        var_list = var_full_list[:]
    elif not set(variables).issubset(set(var_full_list)):
        logging.error(
            '\nERROR: variables parameter is invalid\n  {}'.format(variables))
        sys.exit()
    else:
        var_list = variables[:]

    # Get extent/geo from mask raster
    daymet_ds = gdal.Open(mask_raster)
    daymet_osr = gdc.raster_ds_osr(daymet_ds)
    daymet_proj = gdc.osr_proj(daymet_osr)
    daymet_cs = gdc.raster_ds_cellsize(daymet_ds, x_only=True)
    daymet_extent = gdc.raster_ds_extent(daymet_ds)
    daymet_geo = daymet_extent.geo(daymet_cs)
    daymet_x, daymet_y = daymet_extent.origin()
    daymet_ds = None
    logging.debug('  Projection: {}'.format(daymet_proj))
    logging.debug('  Cellsize: {}'.format(daymet_cs))
    logging.debug('  Geo: {}'.format(daymet_geo))
    logging.debug('  Extent: {}'.format(daymet_extent))
    logging.debug('  Origin: {} {}'.format(daymet_x, daymet_y))

    # Subset data to a smaller extent
    if output_extent is not None:
        logging.info('\nComputing subset extent & geo')
        logging.debug('  Extent: {}'.format(output_extent))
        # Assume input extent is in decimal degrees
        output_extent = gdc.project_extent(gdc.Extent(output_extent),
                                           gdc.epsg_osr(4326), daymet_osr,
                                           0.001)
        output_extent = gdc.intersect_extents([daymet_extent, output_extent])
        output_extent.adjust_to_snap('EXPAND', daymet_x, daymet_y, daymet_cs)
        output_geo = output_extent.geo(daymet_cs)
        logging.debug('  Geo: {}'.format(output_geo))
        logging.debug('  Extent: {}'.format(output_extent))
    elif extent_path is not None:
        logging.info('\nComputing subset extent & geo')
        output_extent = gdc.project_extent(
            gdc.raster_path_extent(extent_path),
            gdc.raster_path_osr(extent_path), daymet_osr,
            gdc.raster_path_cellsize(extent_path, x_only=True))
        output_extent = gdc.intersect_extents([daymet_extent, output_extent])
        output_extent.adjust_to_snap('EXPAND', daymet_x, daymet_y, daymet_cs)
        output_geo = output_extent.geo(daymet_cs)
        logging.debug('  Geo: {}'.format(output_geo))
        logging.debug('  Extent: {}'.format(output_extent))
    else:
        output_extent = daymet_extent.copy()
        output_geo = daymet_geo[:]
    output_shape = output_extent.shape(cs=daymet_cs)
    xi, yi = gdc.array_geo_offsets(daymet_geo, output_geo, daymet_cs)
    output_rows, output_cols = output_extent.shape(daymet_cs)
    logging.debug('  Shape: {} {}'.format(output_rows, output_cols))
    logging.debug('  Offsets: {} {} (x y)'.format(xi, yi))

    # Process each variable
    for input_var in var_list:
        logging.info("\nVariable: {}".format(input_var))

        # Rename variables to match cimis
        if input_var == 'prcp':
            output_var = 'ppt'
        else:
            output_var = input_var
        logging.debug("Output name: {}".format(output_var))

        # Build output folder
        var_ws = os.path.join(output_ws, output_var)
        if not os.path.isdir(var_ws):
            os.makedirs(var_ws)

        # Build output arrays
        logging.debug('  Building arrays')
        if daily_flag:
            daily_sum = np.full((365, output_shape[0], output_shape[1]), 0,
                                np.float64)
            daily_count = np.full((365, output_shape[0], output_shape[1]), 0,
                                  np.uint8)
        if monthly_flag:
            monthly_sum = np.full((12, output_shape[0], output_shape[1]), 0,
                                  np.float64)
            monthly_count = np.full((12, output_shape[0], output_shape[1]), 0,
                                    np.uint8)
        if monthly_flag:
            annual_sum = np.full((output_shape[0], output_shape[1]), 0,
                                 np.float64)
            annual_count = np.full((output_shape[0], output_shape[1]), 0,
                                   np.uint8)

        # Process each file/year separately
        for input_name in sorted(os.listdir(netcdf_ws)):
            logging.debug("  {}".format(input_name))
            input_match = daymet_re.match(input_name)
            if not input_match:
                logging.debug('  Regular expression didn\'t match, skipping')
                continue
            elif input_match.group('VAR') != input_var:
                logging.debug('  Variable didn\'t match, skipping')
                continue
            year_str = input_match.group('YEAR')
            logging.info("  Year: {}".format(year_str))
            year_int = int(year_str)
            year_days = int(dt.datetime(year_int, 12, 31).strftime('%j'))
            if start_dt is not None and year_int < start_dt.year:
                logging.debug('    Before start date, skipping')
                continue
            elif end_dt is not None and year_int > end_dt.year:
                logging.debug('    After end date, skipping')
                continue

            # Build input file path
            input_raster = os.path.join(netcdf_ws, input_name)
            if not os.path.isfile(input_raster):
                logging.debug(
                    '  Input raster doesn\'t exist, skipping    {}'.format(
                        input_raster))
                continue

            # Build output folder
            if daily_flag:
                daily_ws = os.path.join(var_ws, 'daily')
                if not os.path.isdir(daily_ws):
                    os.makedirs(daily_ws)

            if monthly_flag:
                monthly_temp_sum = np.full(
                    (12, output_shape[0], output_shape[1]), 0, np.float64)
                monthly_temp_count = np.full(
                    (12, output_shape[0], output_shape[1]), 0, np.uint8)

            # Read in the DAYMET NetCDF file
            input_nc_f = netCDF4.Dataset(input_raster, 'r')
            # logging.debug(input_nc_f.variables)

            # Check all valid dates in the year
            year_dates = date_range(dt.datetime(year_int, 1, 1),
                                    dt.datetime(year_int + 1, 1, 1))
            for date_dt in year_dates:
                logging.debug('  {}'.format(date_dt.date()))
                # if start_dt is not None and date_dt < start_dt:
                #     logging.debug(
                #         '  {} - before start date, skipping'.format(
                #             date_dt.date()))
                #     continue
                # elif end_dt is not None and date_dt > end_dt:
                #     logging.debug('  {} - after end date, skipping'.format(
                #         date_dt.date()))
                #     continue
                # else:
                #     logging.info('  {}'.format(date_dt.date()))

                doy = int(date_dt.strftime('%j'))
                doy_i = range(1, year_days + 1).index(doy)
                month_i = date_dt.month - 1

                # Arrays are being read as masked array with a -9999 fill value
                # Convert to basic numpy array arrays with nan values
                try:
                    input_ma = input_nc_f.variables[input_var][doy_i, yi:yi +
                                                               output_rows,
                                                               xi:xi +
                                                               output_cols]
                except IndexError:
                    logging.info('    date not in netcdf, skipping')
                    continue
                input_nodata = float(input_ma.fill_value)
                output_array = input_ma.data.astype(np.float32)
                output_array[output_array == input_nodata] = np.nan
                output_mask = np.isfinite(output_array)

                # Convert Kelvin to Celsius
                if input_var in ['tmax', 'tmin']:
                    output_array -= 273.15

                # Save values
                if daily_flag:
                    daily_sum[doy_i, :, :] += output_array
                    daily_count[doy_i, :, :] += output_mask
                if monthly_flag:
                    monthly_temp_sum[month_i, :, :] += output_array
                    monthly_temp_count[month_i, :, :] += output_mask
                if annual_flag:
                    annual_sum[:, :] += output_array
                    annual_count[:, :] += output_mask

                # Cleanup
                # del input_ds, input_array
                del input_ma, output_array, output_mask

            # Compute mean monthly for the year
            if monthly_flag:
                # Sum precipitation
                if input_var == 'prcp':
                    monthly_sum += monthly_temp_sum
                else:
                    monthly_sum += monthly_temp_sum / monthly_temp_count
                # Is this the right count?
                monthly_count += np.any(monthly_temp_count, axis=0)
                del monthly_temp_sum, monthly_temp_count

            input_nc_f.close()
            del input_nc_f

        # Save the projected climatology arrays
        if daily_flag:
            for doy_i in range(daily_sum.shape[0]):
                daily_name = daily_fmt.format(var=output_var,
                                              start=start_year,
                                              end=end_year,
                                              doy=doy_i + 1)
                daily_path = os.path.join(daily_ws, daily_name)
                gdc.array_to_raster(daily_sum[doy_i, :, :] /
                                    daily_count[doy_i, :, :],
                                    daily_path,
                                    output_geo=output_geo,
                                    output_proj=daymet_proj,
                                    stats_flag=stats_flag)
            del daily_sum, daily_count
        if monthly_flag:
            for month_i in range(monthly_sum.shape[0]):
                monthly_name = monthly_fmt.format(var=output_var,
                                                  start=start_year,
                                                  end=end_year,
                                                  month=month_i + 1)
                monthly_path = os.path.join(var_ws, monthly_name)
                gdc.array_to_raster(monthly_sum[month_i, :, :] /
                                    monthly_count[month_i, :, :],
                                    monthly_path,
                                    output_geo=output_geo,
                                    output_proj=daymet_proj,
                                    stats_flag=stats_flag)
            del monthly_sum, monthly_count
        if annual_flag:
            annual_name = annual_fmt.format(var=output_var,
                                            start=start_year,
                                            end=end_year)
            annual_path = os.path.join(var_ws, annual_name)
            gdc.array_to_raster(annual_sum / annual_count,
                                annual_path,
                                output_geo=output_geo,
                                output_proj=daymet_proj,
                                stats_flag=stats_flag)
            del annual_sum, annual_count

    logging.debug('\nScript Complete')
コード例 #9
0
def main(ini_path, tile_list=None, overwrite_flag=False, mp_procs=1):
    """Prep Landsat path/row specific data

    Args:
        ini_path (str): file path of the input parameters file
        tile_list (list): list of Landsat path/row (i.e. [p45r43, p45r33])
            This will override the tile list in the INI file
        overwrite_flag (bool): if True, overwrite existing files
        mp_procs (int): number of cores to use

    Returns:
        None
    """
    logging.info('\nPrepare path/row data')

    # Open config file
    config = python_common.open_ini(ini_path)

    # Get input parameters
    logging.debug('  Reading Input File')
    year = config.getint('INPUTS', 'year')
    if tile_list is None:
        tile_list = python_common.read_param('tile_list', [], config, 'INPUTS')
    project_ws = config.get('INPUTS', 'project_folder')
    logging.debug('  Year: {}'.format(year))
    logging.debug('  Path/rows: {}'.format(', '.join(tile_list)))
    logging.debug('  Project: {}'.format(project_ws))

    # study_area_path = config.get('INPUTS', 'study_area_path')
    footprint_path = config.get('INPUTS', 'footprint_path')
    # For now, assume the UTM zone file is colocated with the footprints shapefile
    utm_path = python_common.read_param(
        'utm_path',
        os.path.join(os.path.dirname(footprint_path),
                     'wrs2_tile_utm_zones.json'), config, 'INPUTS')
    skip_list_path = python_common.read_param('skip_list_path', '', config,
                                              'INPUTS')

    landsat_flag = python_common.read_param('landsat_flag', True, config,
                                            'INPUTS')
    ledaps_flag = False
    dem_flag = python_common.read_param('dem_flag', True, config, 'INPUTS')
    nlcd_flag = python_common.read_param('nlcd_flag', True, config, 'INPUTS')
    cdl_flag = python_common.read_param('cdl_flag', False, config, 'INPUTS')
    landfire_flag = python_common.read_param('landfire_flag', False, config,
                                             'INPUTS')
    field_flag = python_common.read_param('field_flag', False, config,
                                          'INPUTS')

    tile_gcs_buffer = python_common.read_param('tile_buffer', 0.25, config)

    # Input/output folder and file paths
    if landsat_flag:
        landsat_input_ws = config.get('INPUTS', 'landsat_input_folder')
    else:
        landsat_input_ws = None
    # if ledaps_flag:
    #     ledaps_input_ws = config.get('INPUTS', 'ledaps_input_folder')
    # else:
    #     ledaps_input_ws = None

    if dem_flag:
        dem_input_ws = config.get('INPUTS', 'dem_input_folder')
        dem_tile_fmt = config.get('INPUTS', 'dem_tile_fmt')
        dem_output_ws = config.get('INPUTS', 'dem_output_folder')
        dem_output_name = python_common.read_param('dem_output_name',
                                                   'dem.img', config)
        # dem_output_name = config.get('INPUTS', 'dem_output_name')
    else:
        dem_input_ws, dem_tile_fmt = None, None
        dem_output_ws, dem_output_name = None, None

    if nlcd_flag:
        nlcd_input_path = config.get('INPUTS', 'nlcd_input_path')
        nlcd_output_ws = config.get('INPUTS', 'nlcd_output_folder')
        nlcd_output_fmt = python_common.read_param('nlcd_output_fmt',
                                                   'nlcd_{:04d}.img', config)
    else:
        nlcd_input_path, nlcd_output_ws, nlcd_output_fmt = None, None, None

    if cdl_flag:
        cdl_input_path = config.get('INPUTS', 'cdl_input_path')
        cdl_ag_list = config.get('INPUTS', 'cdl_ag_list')
        cdl_ag_list = list(python_common.parse_int_set(cdl_ag_list))
        # default_cdl_ag_list = range(1,62) + range(66,78) + range(204,255)
        # cdl_ag_list = python_common.read_param(
        #    'cdl_ag_list', default_cdl_ag_list, config)
        # cdl_ag_list = list(map(int, cdl_ag_list))
        # cdl_non_ag_list = python_common.read_param(
        #    'cdl_non_ag_list', [], config)
        cdl_output_ws = config.get('INPUTS', 'cdl_output_folder')
        cdl_output_fmt = python_common.read_param('cdl_output_fmt',
                                                  'cdl_{:04d}.img', config)
        cdl_ag_output_fmt = python_common.read_param('cdl_ag_output_fmt',
                                                     'cdl_ag_{:04d}.img',
                                                     config)
    else:
        cdl_input_path, cdl_ag_list = None, None
        cdl_output_ws, cdl_output_fmt, cdl_ag_output_fmt = None, None, None

    if landfire_flag:
        landfire_input_path = config.get('INPUTS', 'landfire_input_path')
        landfire_ag_list = config.get('INPUTS', 'landfire_ag_list')
        landfire_ag_list = list(python_common.parse_int_set(landfire_ag_list))
        # default_landfire_ag_list = range(3960,4000)
        # landfire_ag_list = python_common.read_param(
        #    'landfire_ag_list', default_landfire_ag_list, config)
        # landfire_ag_list = list(map(int, landfire_ag_list))
        landfire_output_ws = config.get('INPUTS', 'landfire_output_folder')
        landfire_output_fmt = python_common.read_param('landfire_output_fmt',
                                                       'landfire_{:04d}.img',
                                                       config)
        landfire_ag_output_fmt = python_common.read_param(
            'landfire_ag_output_fmt', 'landfire_ag_{:04d}.img', config)
    else:
        landfire_input_path, landfire_ag_list = None, None
        landfire_output_ws = None
        landfire_output_fmt, landfire_ag_output_fmt = None, None

    if field_flag:
        field_input_path = config.get('INPUTS', 'field_input_path')
        field_output_ws = config.get('INPUTS', 'field_output_folder')
        field_output_fmt = python_common.read_param('field_output_fmt',
                                                    'fields_{:04d}.img',
                                                    config)
    else:
        field_input_path = None
        field_output_ws, field_output_fmt = None, None

    # File/folder names
    orig_data_folder_name = 'ORIGINAL_DATA'

    # Check inputs folders/paths
    logging.info('\nChecking input folders/files')
    file_check(footprint_path)
    file_check(utm_path)
    if landsat_flag:
        folder_check(landsat_input_ws)
    # if ledaps_flag:
    #     folder_check(ledaps_input_ws)
    if dem_flag:
        folder_check(dem_input_ws)
    if nlcd_flag:
        file_check(nlcd_input_path)
    if cdl_flag:
        file_check(cdl_input_path)
    if landfire_flag:
        # Landfire will likely be an ESRI grid (set as a folder)
        if not (os.path.isdir(landfire_input_path)
                or os.path.isfile(landfire_input_path)):
            logging.error('\n  {} does not exist'.format(landfire_input_path))
    if field_flag:
        file_check(field_input_path)
    if skip_list_path:
        file_check(skip_list_path)

    # Build output folders
    if not os.path.isdir(project_ws):
        os.makedirs(project_ws)
    if dem_flag and not os.path.isdir(dem_output_ws):
        os.makedirs(dem_output_ws)
    if nlcd_flag and not os.path.isdir(nlcd_output_ws):
        os.makedirs(nlcd_output_ws)
    if cdl_flag and not os.path.isdir(cdl_output_ws):
        os.makedirs(cdl_output_ws)
    if landfire_flag and not os.path.isdir(landfire_output_ws):
        os.makedirs(landfire_output_ws)
    if field_flag and not os.path.isdir(field_output_ws):
        os.makedirs(field_output_ws)

    # For now assume path/row are two digit numbers
    tile_fmt = 'p{:03d}r{:03d}'
    tile_re = re.compile('p(\d{3})r(\d{3})')
    image_re = re.compile(
        '^(LT04|LT05|LE07|LC08)_(\d{3})(\d{3})_(\d{4})(\d{2})(\d{2})')
    snap_cs = 30
    snap_xmin, snap_ymin = (15, 15)

    # Set snap environment parameters
    env = gdc.env
    env.cellsize = snap_cs
    env.snap_xmin, env.snap_ymin = snap_xmin, snap_ymin

    # Use WGSS84 (EPSG 4326) for GCS spatial reference
    # Could also use NAD83 (EPSG 4269)
    # gcs_epsg = 4326
    # gcs_osr = epsg_osr(4326)
    # gcs_proj = osr_proj(gcs_osr)

    # Landsat Footprints (WRS2 Descending Polygons)
    logging.debug('\nFootprint (WRS2 descending should be GCS84):')
    tile_gcs_osr = gdc.feature_path_osr(footprint_path)
    logging.debug('  OSR: {}'.format(tile_gcs_osr))

    # Doublecheck that WRS2 descending shapefile is GCS84
    # if tile_gcs_osr != epsg_osr(4326):
    #     logging.error('  WRS2 is not GCS84')
    #     sys.exit()

    # Get geometry for each path/row
    tile_gcs_wkt_dict = path_row_wkt_func(footprint_path,
                                          path_field='PATH',
                                          row_field='ROW')

    # Get UTM zone for each path/row
    # DEADBEEF - Using "eval" is considered unsafe and should be changed
    tile_utm_zone_dict = eval(open(utm_path, 'r').read())

    # Project study area geometry to GCS coordinates
    # logging.debug('\nStudy area')
    # study_area_geom = feature_path_geom_union(study_area_path)
    # study_area_gcs_geom = study_area_geom.Clone()
    # study_area_gcs_geom.TransformTo(tile_gcs_osr)

    # Get list of all intersecting Landsat path/rows
    # logging.info('\nLandsat path/rows')
    # tile_list = []
    # for tile_name, tile_gcs_wkt in tile_gcs_wkt_dict.items():
    #     tile_gcs_geom = ogr.CreateGeometryFromWkt(tile_gcs_wkt)
    #     if tile_gcs_geom.Intersects(study_area_gcs_geom):
    #         tile_list.append(tile_name)
    # for tile_name in sorted(tile_list):
    #     logging.debug('  {}'.format(tile_name))

    # Check that each path/row extent and UTM zone exist
    logging.info('\nChecking path/row list against footprint shapefile')
    for tile_name in sorted(tile_list):
        if tile_name not in tile_gcs_wkt_dict.keys():
            logging.error(
                '  {} feature not in footprint shapefile'.format(tile_name))
            continue
        elif tile_name not in tile_utm_zone_dict.keys():
            logging.error(
                '  {} UTM zone not in footprint shapefile'.format(tile_name))
            continue
        elif tile_utm_zone_dict[tile_name] == 0:
            logging.error(('  UTM zone is not set for {} in ' +
                           'footprint shapefile').format(tile_name))
            continue

    # Build output folders for each path/row
    logging.info('\nBuilding path/row folders')
    for tile_name in tile_list:
        logging.debug('  {} {}'.format(year, tile_name))
        tile_output_ws = os.path.join(project_ws, str(year), tile_name)
        if ((landsat_flag or ledaps_flag)
                and not os.path.isdir(tile_output_ws)):
            os.makedirs(tile_output_ws)
        if (dem_flag
                and not os.path.isdir(os.path.join(dem_output_ws, tile_name))):
            os.makedirs(os.path.join(dem_output_ws, tile_name))
        if (nlcd_flag and
                not os.path.isdir(os.path.join(nlcd_output_ws, tile_name))):
            os.makedirs(os.path.join(nlcd_output_ws, tile_name))
        if (cdl_flag
                and not os.path.isdir(os.path.join(cdl_output_ws, tile_name))):
            os.makedirs(os.path.join(cdl_output_ws, tile_name))
        if (landfire_flag and not os.path.isdir(
                os.path.join(landfire_output_ws, tile_name))):
            os.makedirs(os.path.join(landfire_output_ws, tile_name))
        if (field_flag and
                not os.path.isdir(os.path.join(field_output_ws, tile_name))):
            os.makedirs(os.path.join(field_output_ws, tile_name))

    # Read skip list
    if (landsat_flag or ledaps_flag) and skip_list_path:
        logging.debug('\nReading scene skiplist')
        with open(skip_list_path) as skip_list_f:
            skip_list = skip_list_f.readlines()
            skip_list = [
                scene.strip() for scene in skip_list
                if image_re.match(scene.strip())
            ]
    else:
        logging.debug('\nSkip list not set in INI')
        skip_list = []

    # Copy and unzip raw Landsat scenes
    # Use these for thermal band, MTL file (scene time), and to run FMask
    if landsat_flag:
        logging.info('\nExtract raw Landsat scenes')
        # Process each path/row
        extract_targz_list = []
        for tile_name in tile_list:
            tile_output_ws = os.path.join(project_ws, str(year), tile_name)

            # Force path/row as strings without leading zeros
            path, row = map(str, map(int, tile_re.match(tile_name).groups()))
            tile_input_ws = os.path.join(landsat_input_ws, path, row,
                                         str(year))
            if not os.path.isdir(tile_input_ws):
                continue
            logging.info('  {} {}'.format(year, tile_name))

            # Process each tar.gz file
            for input_name in sorted(os.listdir(tile_input_ws)):
                if (not image_re.match(input_name)
                        and not input_name.endswith('.tar.gz')):
                    continue

                # Get Landsat scene ID from tar.gz file name
                # DEADBEEF - For now this is the EE scene ID, but it could be
                #   changed to the full collection 1 ID
                scene_id = input_name.split('.')[0]

                # Output workspace
                image_output_ws = os.path.join(tile_output_ws, scene_id)
                orig_data_ws = os.path.join(image_output_ws,
                                            orig_data_folder_name)

                if skip_list and scene_id in skip_list:
                    logging.debug('    {} - Skipping scene'.format(scene_id))
                    # DEADBEEF - Should the script always remove the scene
                    #   if it is in the skip list?
                    # Maybe only if overwrite is set?
                    if os.path.isdir(image_output_ws):
                        # input('Press ENTER to delete {}'.format(scene_id))
                        shutil.rmtree(image_output_ws)
                    continue

                # If orig_data_ws doesn't exist, don't check images
                if not os.path.isdir(orig_data_ws):
                    os.makedirs(orig_data_ws)
                elif (not overwrite_flag
                      and landsat_files_check(image_output_ws)):
                    continue

                # Extract Landsat tar.gz file
                input_path = os.path.join(tile_input_ws, input_name)
                if mp_procs > 1:
                    extract_targz_list.append([input_path, orig_data_ws])
                else:
                    python_common.extract_targz_func(input_path, orig_data_ws)

                # # Use a command line call
                # input_path = os.path.join(tile_input_ws, input_name)
                # if job_i % pbs_jobs != 0:
                #     job_list.append('tar -zxvf {} -C {} &\n'.format(
                #         input_path, orig_data_ws))
                # else:
                #     job_list.append('tar -zxvf {} -C {}\n'.format(
                #         input_path, orig_data_ws))
                #     # job_list.append('tar -zxvf {} -C {} &\n'.format(
                #     #     input_path, orig_data_ws))
                #     # job_list.append('wait\n')
                # job_i += 1

        # Extract Landsat tar.gz files using multiprocessing
        if extract_targz_list:
            pool = mp.Pool(mp_procs)
            results = pool.map(python_common.extract_targz_mp,
                               extract_targz_list,
                               chunksize=1)
            pool.close()
            pool.join()
            del results, pool

    # Get projected extent for each path/row
    # This should probably be in a function
    if (dem_flag or nlcd_flag or cdl_flag or landfire_flag or field_flag):
        tile_utm_extent_dict = gcs_to_utm_dict(tile_list, tile_utm_zone_dict,
                                               tile_gcs_osr, tile_gcs_wkt_dict,
                                               tile_gcs_buffer, snap_xmin,
                                               snap_ymin, snap_cs)

    # Mosaic DEM tiles for each path/row
    if dem_flag:
        logging.info('\nBuild DEM for each path/row')
        mosaic_mp_list = []
        for tile_name in tile_list:
            # Output folder and path
            tile_output_path = os.path.join(dem_output_ws, tile_name,
                                            dem_output_name)
            if not overwrite_flag and os.path.isfile(tile_output_path):
                logging.debug('    {} already exists, skipping'.format(
                    os.path.basename(tile_output_path)))
                continue
            logging.info('  {}'.format(tile_name))

            # Get the path/row geometry in GCS for selecting intersecting tiles
            tile_gcs_geom = ogr.CreateGeometryFromWkt(
                tile_gcs_wkt_dict[tile_name])
            # Apply a small buffer (in degrees) to the extent
            # DEADBEEF - Buffer fails if GDAL is not built with GEOS support
            # tile_gcs_geom = tile_gcs_geom.Buffer(tile_gcs_buffer)
            tile_gcs_extent = gdc.Extent(tile_gcs_geom.GetEnvelope())
            tile_gcs_extent = tile_gcs_extent.ogrenv_swap()
            tile_gcs_extent.buffer_extent(tile_gcs_buffer)
            # tile_gcs_extent.ymin, tile_gcs_extent.xmax = tile_gcs_extent.xmax, tile_gcs_extent.ymin

            # Offsets are needed since tile name is upper left corner of tile
            # Tile n36w120 spans -120 <-> -119 and 35 <-> 36
            lon_list = range(
                int(tile_gcs_extent.xmin) - 1, int(tile_gcs_extent.xmax))
            lat_list = range(
                int(tile_gcs_extent.ymin) + 1,
                int(tile_gcs_extent.ymax) + 2)

            # Get list of DEM tile rasters
            dem_tile_list = []
            for lat, lon in itertools.product(lat_list, lon_list):
                # Convert sign of lat/lon to letter
                lat = ('n' + '{:02d}'.format(abs(lat)) if lat >= 0 else 's' +
                       '{:02d}'.format(abs(lat)))
                lon = ('w' + '{:03d}'.format(abs(lon)) if lon < 0 else 'e' +
                       '{:03d}'.format(abs(lon)))
                dem_tile_path = os.path.join(dem_input_ws,
                                             dem_tile_fmt.format(lat, lon))
                if os.path.isfile(dem_tile_path):
                    dem_tile_list.append(dem_tile_path)
            if not dem_tile_list:
                logging.warning('    WARNING: No DEM tiles were selected')
                continue

            # Mosaic tiles using mosaic function
            tile_utm_osr = gdc.epsg_osr(32600 +
                                        int(tile_utm_zone_dict[tile_name]))
            tile_utm_proj = gdc.epsg_proj(32600 +
                                          int(tile_utm_zone_dict[tile_name]))
            tile_utm_extent = tile_utm_extent_dict[tile_name]
            tile_utm_ullr = tile_utm_extent.ul_lr_swap()

            # Mosaic, clip, project using custom function
            if mp_procs > 1:
                mosaic_mp_list.append([
                    dem_tile_list, tile_output_path, tile_utm_proj, snap_cs,
                    tile_utm_extent
                ])
            else:
                gdc.mosaic_tiles(dem_tile_list, tile_output_path, tile_utm_osr,
                                 snap_cs, tile_utm_extent)

            # Cleanup
            del tile_output_path
            del tile_gcs_geom, tile_gcs_extent, tile_utm_extent
            del tile_utm_osr, tile_utm_proj
            del lon_list, lat_list, dem_tile_list
        # Mosaic DEM rasters using multiprocessing
        if mosaic_mp_list:
            pool = mp.Pool(mp_procs)
            results = pool.map(mosaic_tiles_mp, mosaic_mp_list, chunksize=1)
            pool.close()
            pool.join()
            del results, pool

    # Project/clip NLCD for each path/row
    if nlcd_flag:
        logging.info('\nBuild NLCD for each path/row')
        project_mp_list = []
        for tile_name in tile_list:
            nlcd_output_path = os.path.join(nlcd_output_ws, tile_name,
                                            nlcd_output_fmt.format(year))
            if not overwrite_flag and os.path.isfile(nlcd_output_path):
                logging.debug('    {} already exists, skipping'.format(
                    os.path.basename(nlcd_output_path)))
                continue
            logging.info('  {}'.format(tile_name))

            # Set the nodata value on the NLCD raster if it is not set
            nlcd_ds = gdal.Open(nlcd_input_path, 0)
            nlcd_band = nlcd_ds.GetRasterBand(1)
            nlcd_nodata = nlcd_band.GetNoDataValue()
            nlcd_ds = None
            if nlcd_nodata is None:
                nlcd_nodata = 255

            # Clip and project
            tile_utm_osr = gdc.epsg_osr(32600 +
                                        int(tile_utm_zone_dict[tile_name]))
            tile_utm_proj = gdc.epsg_proj(32600 +
                                          int(tile_utm_zone_dict[tile_name]))
            tile_utm_extent = tile_utm_extent_dict[tile_name]
            tile_utm_ullr = tile_utm_extent.ul_lr_swap()

            if mp_procs > 1:
                project_mp_list.append([
                    nlcd_input_path, nlcd_output_path,
                    gdal.GRA_NearestNeighbour, tile_utm_proj, snap_cs,
                    tile_utm_extent, nlcd_nodata
                ])
            else:
                gdc.project_raster(nlcd_input_path, nlcd_output_path,
                                   gdal.GRA_NearestNeighbour, tile_utm_osr,
                                   snap_cs, tile_utm_extent, nlcd_nodata)

            # Cleanup
            del nlcd_output_path
            del nlcd_ds, nlcd_band, nlcd_nodata
            del tile_utm_osr, tile_utm_proj, tile_utm_extent
        # Project NLCD rasters using multiprocessing
        if project_mp_list:
            pool = mp.Pool(mp_procs)
            results = pool.map(gdc.project_raster_mp,
                               project_mp_list,
                               chunksize=1)
            pool.close()
            pool.join()
            del results, pool

    # Project/clip CDL for each path/row
    if cdl_flag:
        logging.info('\nBuild CDL for each path/row')
        project_mp_list, remap_mp_list = [], []
        for tile_name in tile_list:
            cdl_output_path = os.path.join(cdl_output_ws, tile_name,
                                           cdl_output_fmt.format(year))
            cdl_ag_output_path = os.path.join(cdl_output_ws, tile_name,
                                              cdl_ag_output_fmt.format(year))
            if not os.path.isfile(cdl_input_path):
                logging.error('\n\n  {} does not exist'.format(cdl_input_path))
                sys.exit()
            if not overwrite_flag and os.path.isfile(cdl_output_path):
                logging.debug('    {} already exists, skipping'.format(
                    os.path.basename(cdl_output_path)))
                continue
            logging.info('  {}'.format(tile_name))

            # Set the nodata value on the CDL raster if it is not set
            cdl_ds = gdal.Open(cdl_input_path, 0)
            cdl_band = cdl_ds.GetRasterBand(1)
            cdl_nodata = cdl_band.GetNoDataValue()
            cdl_ds = None
            if cdl_nodata is None:
                cdl_nodata = 255

            # Clip and project
            tile_utm_osr = gdc.epsg_osr(32600 +
                                        int(tile_utm_zone_dict[tile_name]))
            tile_utm_proj = gdc.epsg_proj(32600 +
                                          int(tile_utm_zone_dict[tile_name]))
            tile_utm_extent = tile_utm_extent_dict[tile_name]
            if mp_procs > 1:
                project_mp_list.append([
                    cdl_input_path, cdl_output_path, gdal.GRA_NearestNeighbour,
                    tile_utm_proj, snap_cs, tile_utm_extent, cdl_nodata
                ])
                remap_mp_list.append(
                    [cdl_output_path, cdl_ag_output_path, cdl_ag_list])
            else:
                gdc.project_raster(cdl_input_path, cdl_output_path,
                                   gdal.GRA_NearestNeighbour, tile_utm_osr,
                                   snap_cs, tile_utm_extent, cdl_nodata)
                # Build a mask of CDL ag lands
                remap_mask_func(cdl_output_path, cdl_ag_output_path,
                                cdl_ag_list)

            # Cleanup
            del cdl_output_path
            del cdl_ds, cdl_band, cdl_nodata
            del tile_utm_osr, tile_utm_proj, tile_utm_extent
        # Project CDL rasters using multiprocessing
        if project_mp_list:
            pool = mp.Pool(mp_procs)
            results = pool.map(gdc.project_raster_mp,
                               project_mp_list,
                               chunksize=1)
            pool.close()
            pool.join()
            del results, pool
        if remap_mp_list:
            pool = mp.Pool(mp_procs)
            results = pool.map(remap_mask_mp, remap_mp_list, chunksize=1)
            pool.close()
            pool.join()
            del results, pool

    # Project/clip LANDFIRE for each path/row
    if landfire_flag:
        logging.info('\nBuild LANDFIRE for each path/row')
        project_mp_list, remap_mp_list = [], []
        for tile_name in tile_list:
            landfire_output_path = os.path.join(
                landfire_output_ws, tile_name,
                landfire_output_fmt.format(year))
            landfire_ag_output_path = os.path.join(
                landfire_output_ws, tile_name,
                landfire_ag_output_fmt.format(year))
            if not overwrite_flag and os.path.isfile(landfire_output_path):
                logging.debug('    {} already exists, skipping'.format(
                    os.path.basename(landfire_output_path)))
                continue
            logging.info('  {}'.format(tile_name))

            # Set the nodata value on the LANDFIRE raster if it is not set
            # landfire_ds = gdal.Open(landfire_input_path, 0)
            # landfire_band = landfire_ds.GetRasterBand(1)
            # landfire_nodata = landfire_band.GetNoDataValue()
            # landfire_ds = None
            # if landfire_nodata is None:
            #     landfire_nodata = 32767
            # del landfire_ds, landfire_band
            landfire_nodata = 32767

            # Clip and project
            tile_utm_osr = gdc.epsg_osr(32600 +
                                        int(tile_utm_zone_dict[tile_name]))
            tile_utm_proj = gdc.epsg_proj(32600 +
                                          int(tile_utm_zone_dict[tile_name]))
            tile_utm_extent = tile_utm_extent_dict[tile_name]
            if mp_procs > 1:
                project_mp_list.append([
                    landfire_input_path, landfire_output_path,
                    gdal.GRA_NearestNeighbour, tile_utm_proj, snap_cs,
                    tile_utm_extent, landfire_nodata
                ])
                remap_mp_list.append([
                    landfire_output_path, landfire_ag_output_path,
                    landfire_ag_list
                ])
            else:
                gdc.project_raster(landfire_input_path, landfire_output_path,
                                   gdal.GRA_NearestNeighbour, tile_utm_osr,
                                   snap_cs, tile_utm_extent, landfire_nodata)
                # Build a mask of LANDFIRE ag lands
                remap_mask_func(landfire_output_path, landfire_ag_output_path,
                                landfire_ag_list)

            # Cleanup
            del landfire_output_path
            del tile_utm_osr, tile_utm_proj, tile_utm_extent
        # Project LANDFIRE rasters using multiprocessing
        if project_mp_list:
            pool = mp.Pool(mp_procs)
            results = pool.map(gdc.project_raster_mp,
                               project_mp_list,
                               chunksize=1)
            pool.close()
            pool.join()
            del results, pool
        if remap_mp_list:
            pool = mp.Pool(mp_procs)
            results = pool.map(remap_mask_mp, remap_mp_list, chunksize=1)
            pool.close()
            pool.join()
            del results, pool

    # Convert field shapefiles to raster
    if field_flag:
        logging.info('\nBuild field rasters for each path/row')
        for tile_name in tile_list:
            logging.info('  {}'.format(tile_name))
            tile_output_ws = os.path.join(field_output_ws, tile_name)

            # Shapefile paths
            field_proj_name = (
                os.path.splitext(field_output_fmt.format(year))[0] +
                "_wgs84z{}.shp".format(tile_utm_zone_dict[tile_name]))
            field_proj_path = os.path.join(tile_output_ws, field_proj_name)
            field_output_path = os.path.join(tile_output_ws,
                                             field_output_fmt.format(year))
            if not overwrite_flag and os.path.isfile(field_output_path):
                logging.debug('    {} already exists, skipping'.format(
                    os.path.basename(field_output_path)))
                continue

            # The ogr2ogr spatial query is in the input spatial reference
            # Project the path/row extent to the field osr/proj
            field_input_osr = gdc.feature_path_osr(field_input_path)
            tile_utm_osr = gdc.epsg_osr(32600 +
                                        int(tile_utm_zone_dict[tile_name]))
            # field_input_proj = gdc.osr_proj(field_input_osr)
            # tile_utm_proj = gdc.osr_proj(tile_utm_osr)
            field_tile_extent = gdc.project_extent(
                tile_utm_extent_dict[tile_name], tile_utm_osr, field_input_osr,
                30)

            # Project shapefile to the path/row zone
            # Clipping requires GDAL to be built with GEOS support
            subprocess.call(
                [
                    'ogr2ogr', '-t_srs', 'EPSG:326{}'.format(
                        tile_utm_zone_dict[tile_name]), '-f', 'ESRI Shapefile',
                    '-overwrite'
                ] + ['-spat'] + list(map(str, field_tile_extent)) +
                ['-clipdst'] +
                list(map(str, tile_utm_extent_dict[tile_name])) +
                # ['-clipdst'] + list(map(str, tile_utm_extent_dict[tile_name])) +
                # ['-clipsrc'] + list(map(str, field_tile_extent)) +
                # ['-clipsrc'] + list(map(str, field_tile_extent)) +
                [field_proj_path, field_input_path])

            # Convert shapefile to raster
            field_mem_ds = gdc.polygon_to_raster_ds(
                field_proj_path,
                nodata_value=0,
                burn_value=1,
                output_osr=tile_utm_osr,
                output_extent=tile_utm_extent_dict[tile_name])
            field_output_driver = gdc.raster_driver(field_output_path)
            if field_output_path.lower().endswith('.img'):
                field_output_ds = field_output_driver.CreateCopy(
                    field_output_path, field_mem_ds, 0, ['COMPRESS=YES'])
            else:
                field_output_ds = field_output_driver.CreateCopy(
                    field_output_path, field_mem_ds, 0)
            field_output_ds, field_mem_ds = None, None

            # Remove field shapefile
            # try:
            #     remove_file(field_proj_path)
            # except:
            #     pass

            # Cleanup
            del tile_utm_osr, field_tile_extent, field_input_osr
            # del tile_utm_proj, field_input_proj
            del field_proj_name, field_proj_path, field_output_path

    logging.debug('\nScript complete')