コード例 #1
0
 def _get_embbeder(self, weigths_name, special_tokens_fix):
     embedders = {'bert': PretrainedBertEmbedder(
         pretrained_model=weigths_name,
         requires_grad=False,
         top_layer_only=True,
         special_tokens_fix=special_tokens_fix)
     }
     text_field_embedder = BasicTextFieldEmbedder(
         token_embedders=embedders,
         embedder_to_indexer_map={"bert": ["bert", "bert-offsets"]},
         allow_unmatched_keys=True)
     return text_field_embedder
コード例 #2
0
ファイル: train_finetune_latest.py プロジェクト: yf1291/nlp4
def get_token_embedders(model_name, tune_bert=False, special_tokens_fix=0):
    take_grads = True if tune_bert > 0 else False  # bert参数是否也进行训练.
    bert_token_emb = PretrainedBertEmbedder(
        pretrained_model=model_name,
        top_layer_only=True, requires_grad=take_grads, # 只训练最后一层.
        special_tokens_fix=special_tokens_fix)# 这里面进行了token扩充.然后也补上了新的初始化权重,也复用了就的权重.

    token_embedders = {'bert': bert_token_emb}
    embedder_to_indexer_map = {"bert": ["bert", "bert-offsets"]}

    text_filed_emd = BasicTextFieldEmbedder(token_embedders=token_embedders,
                                            embedder_to_indexer_map=embedder_to_indexer_map,
                                            allow_unmatched_keys=True)
    return text_filed_emd
コード例 #3
0
def get_token_embedders(model_name, tune_bert=False, special_tokens_fix=0):
    take_grads = True if tune_bert > 0 else False
    bert_token_emb = PretrainedBertEmbedder(
        pretrained_model=model_name,
        top_layer_only=True, requires_grad=take_grads,
        special_tokens_fix=special_tokens_fix)

    token_embedders = {'bert': bert_token_emb}
    embedder_to_indexer_map = {"bert": ["bert", "bert-offsets"]}

    text_filed_emd = BasicTextFieldEmbedder(token_embedders=token_embedders,
                                            embedder_to_indexer_map=embedder_to_indexer_map,
                                            allow_unmatched_keys=True)
    return text_filed_emd