コード例 #1
0
def extract_tf_records_from_GEDI_tiffs():
    """Extracts data directly from GEDI tiffs and
    inserts them into tf records. This allows us to
    offload the normalization procedure to either
    right before training (via sampling) or during
    training (via normalization with a batch's max)"""

    # Grab the global config
    config = GEDIconfig()

    # Make dirs if they do not exist
    dir_list = [
        config.train_directory, config.validation_directory,
        config.tfrecord_dir, config.train_checkpoint
    ]
    if 'test' in config.tvt_flags:
        dir_list += [config.test_directory]
        config.raw_im_dirs = [x + '_train' for x in config.raw_im_dirs]
        config.raw_im_dirs += [
            x.split('_train')[0] + '_test' for x in config.raw_im_dirs
        ]
    [make_dir(d) for d in dir_list]

    print('raw_im_dirs', config.raw_im_dirs)
    # gather file names of images to process
    im_lists = flatten_list([
        glob(os.path.join(config.home_dir, r, '*' + config.raw_im_ext))
        for r in config.raw_im_dirs
    ])
    print('im_lists', im_lists[:3])

    # Write labels list
    label_list = os.path.join(
        config.processed_image_patch_dir,
        'list_of_' + '_'.join(x
                              for x in config.image_prefixes) + '_labels.txt')
    print('label_list', label_list)
    write_label_list(im_lists, label_list)

    # Finally, write the labels file:
    labels_to_class_names = dict(
        zip(range(len(config.label_directories)), config.label_directories))
    write_label_file(labels_to_class_names, config.tfrecord_dir)

    # Copy data into the appropriate training/testing directories
    if 'test' in config.tvt_flags:
        new_files = split_files(im_lists, config.train_proportion,
                                config.tvt_flags)
    else:
        new_files = split_files(im_lists, config.train_proportion,
                                config.tvt_flags)

    if type(config.tvt_flags) is str:
        files = new_files[config.tvt_flags]
        label_list = new_files[config.tvt_flags + '_labels']
        output_pointer = os.path.join(config.tfrecord_dir,
                                      config.tvt_flags + '.tfrecords')
        extract_to_tf_records(files=files,
                              label_list=label_list,
                              output_pointer=output_pointer,
                              ratio_list=None,
                              config=config,
                              k=config.tvt_flags)
    else:
        for k in config.tvt_flags:
            files = new_files[k]
            label_list = new_files[k + '_labels']
            print('GEDI label list', label_list)
            output_pointer = os.path.join(config.tfrecord_dir,
                                          k + '.tfrecords')
            extract_to_tf_records(files=files,
                                  label_list=label_list,
                                  output_pointer=output_pointer,
                                  ratio_list=None,
                                  config=config,
                                  k=k)
コード例 #2
0
def extract_tf_records_from_GEDI_tiffs():
    """Extracts data directly from GEDI tiffs and
    inserts them into tf records. This allows us to
    offload the normalization procedure to either
    right before training (via sampling) or during
    training (via normalization with a batch's max)"""

    # Grab the global config
    config = GEDIconfig()

    # If requested load in the ratio file
    ratio_file = os.path.join(
        config.home_dir, config.original_image_dir, config.ratio_stem,
        '%s%s.csv' % (config.ratio_prefix, config.experiment_image_set))
    if config.ratio_prefix is not None and os.path.exists(ratio_file):
        ratio_list = read_csv(os.path.join(ratio_file))
    else:
        ratio_list = None

    # Allow option for per-timestep image extraction
    if config.timestep_delta_frames:
        extraction = extract_to_tf_records
    else:
        extraction = vtf

    # Make dirs if they do not exist
    dir_list = [
        config.train_directory, config.validation_directory,
        config.tfrecord_dir, config.train_checkpoint
    ]
    if 'test' in config.tvt_flags:
        dir_list += [config.test_directory]
        config.raw_im_dirs = [x + '_train' for x in config.raw_im_dirs]
        config.raw_im_dirs += [
            x.split('_train')[0] + '_test' for x in config.raw_im_dirs
        ]
    [make_dir(d) for d in dir_list]
    im_lists = get_image_dict(config)

    # Sample from training for validation images
    if 'val' in config.tvt_flags:
        im_lists['val'], im_lists['train'] = sample_files(
            im_lists['train'], config.train_proportion, config.tvt_flags)
    if config.encode_time_of_death is not None:
        death_timepoints = pd.read_csv(
            config.encode_time_of_death)[['plate_well_neuron', 'dead_tp']]
        keep_experiments = pd.read_csv(config.time_of_death_experiments)
        im_labels = {}
        for k, v in im_lists.items():
            if k is not 'test':
                proc_ims, proc_labels = find_timepoint(
                    images=v,
                    data=death_timepoints,
                    keep_experiments=keep_experiments,
                    remove_thresh=config.mask_timepoint_value)
                im_labels[k] = proc_labels
                im_lists[k] = proc_ims
                df = pd.DataFrame(np.vstack(
                    (proc_ims, proc_labels)).transpose(),
                                  columns=['image', 'timepoint'])
                df.to_csv('%s.csv' % k)
            else:
                im_labels[k] = find_label(v)
    else:
        im_labels = {k: find_label(v) for k, v in im_lists.items()}

    if type(config.tvt_flags) is str:
        tvt_flags = [config.tvt_flags]
    else:
        tvt_flags = config.tvt_flags
    assert len(np.concatenate(im_lists.values())), 'Could not find any files.'
    label_list = [
        write_labels(flag=x, im_lists=im_lists, config=config)
        for x in tvt_flags
    ]

    if config.include_GEDI_in_tfrecords > 0:
        tf_flag = '_%sgedi' % config.include_GEDI_in_tfrecords
    else:
        tf_flag = ''
    if config.extra_image:
        tf_flag = '_1image'
    else:
        tf_flag = ''

    if type(config.tvt_flags) is str:
        files = im_lists[config.tvt_flags]
        label_list = im_labels[config.tvt_flags]
        output_pointer = os.path.join(
            config.tfrecord_dir,
            '%s%s.tfrecords' % (config.tvt_flags, tf_flag))
        extraction(files=files,
                   label_list=label_list,
                   output_pointer=output_pointer,
                   ratio_list=ratio_list,
                   config=config,
                   k=config.tvt_flags)
    else:
        for k in config.tvt_flags:
            files = im_lists[k]
            label_list = im_labels[k]
            output_pointer = os.path.join(
                config.tfrecord_dir,
                '%s%s.tfrecords' % (tf_flag, config.tf_record_names[k]))
            extraction(files=files,
                       label_list=label_list,
                       output_pointer=output_pointer,
                       ratio_list=ratio_list,
                       config=config,
                       k=k)