コード例 #1
0
def run_point(sx,sy,sI,dx,dy,geometry,cross_sections):
  x = sx
  y = sy
  I = sI
  dA = 0.005806  # m^2
  #detector inputs: location (x,y), epsilon = 0.62, area, dwell = 5.0 secs
  detectors = [gefry3.Detector((dx,dy), 0.62, dA, 5) for i in range(2)]

  #--- Setup Domain ---#
  print("1")
  with open(geometry) as f:
    geo   = pickle.load(f)  #geo is a list of shapely polygons
  print("2")
  buildings = [gefry3.Solid(s.exterior.coords) for s in geo]
  bbox      = [(0, 0), (250, 0), (250, 178), (0, 178), (0, 0)]
  domain    = gefry3.Domain(bbox, buildings)
  sigmas    = np.loadtxt(cross_sections)
  materials = [gefry3.Material(1,s) for s in sigmas] #this is a bit of a hack, these are the building cross sections

  #Interstitial material is just air. Don't think this was in gefry2.
  interstitial_material = gefry3.Material(1,0) #cross section of the air
  # I don't think this is correct, but let's assume the air doesn't attenuate rads

  #--- Setup Source ---#
  true_source = gefry3.Source((158,98),3.214e9) #not really used for anything

  #--- Initalize Radiation Model ---#
  P = gefry3.SimpleProblem(domain, interstitial_material, materials, true_source, detectors)
  return P((x,y),I)
コード例 #2
0
def abc(prior,background,observations,detectors,geometry,cross_sections):
    obs       = np.loadtxt(observations)
    n_obs     = obs.shape[0]
    n_sen     = obs.shape[1]
    r_d       = np.loadtxt(detectors)

    #--- Setup Detectors ---#
    dA = 0.005806  # m^2
    #detector inputs: location (x,y), epsilon = 0.62, area, dwell = 5.0 secs
    detectors = [gefry3.Detector(i, 0.62, dA, 5) for i in r_d]

    #--- Setup Domain ---#
    with open(geometry) as f:
        geo   = pickle.load(f)  #geo is a list of shapely polygons
    buildings = [gefry3.Solid(s.exterior.coords) for s in geo]
    bbox      = [(0, 0), (250, 0), (250, 178), (0, 178), (0, 0)]
    domain    = gefry3.Domain(bbox, buildings)
    sigmas    = np.loadtxt(cross_sections)
    materials = [gefry3.Material(1,s) for s in sigmas] #this is a bit of a hack, these are the building cross sections

    #Interstitial material is just air. Don't think this was in gefry2.
    interstitial_material = gefry3.Material(1,0) #cross section of the air
    # I don't think this is correct, but let's assume the air doesn't attenuate rads

    #--- Setup Source ---#
    true_source = gefry3.Source((158,98),3.214e9) #not really used for anything

    #--- Initalize Radiation Model ---#
    P = gefry3.SimpleProblem(domain, interstitial_material, materials, true_source, detectors)

    #--- ABC run ---#
    N      = prior.shape[0]
    result = np.zeros((N,n_sen))
    for i in range(N):
        if ((i % 1000) == 0): print(i/N)
        result[i,] = np.random.poisson(np.rint(P((prior[i,0],prior[i,1]),prior[i,2])+background))
    return result
コード例 #3
0
buildings = [gefry3.Solid(s.exterior.coords) for s in geo]
bbox      = [(0, 0), (250, 0), (250, 178), (0, 178), (0, 0)]
domain    = gefry3.Domain(bbox, buildings) #geo is a list of shapely polygons

sigmas    = np.loadtxt('cross_sec.dat') #these go in the interstitial materials component?
materials = [gefry3.Material(1,s) for s in sigmas] #this is a bit of a hack, these are the building cross sections

interstitial_material = gefry3.Material(1,0) #cross section of the air the gammas are moving through (but we don't have this?)
# I don't think this is correct, but let's try it

#--- Setup Source ---#
true_source = gefry3.Source((158,98),3.214e9)

#--- Initalize Radiation Model ---#
P = gefry3.SimpleProblem(domain, interstitial_material, materials, true_source, detectors)

mean_response = P((85,85),3.214e9) + background
#     file_name = 'radiation_chain%d.txt' % (init_values[4])
# 	np.savetxt(file_name,chain, delimiter=',')
#
obs = []
for i in range(n_obs):
	obs.append(np.random.poisson(mean_response))

obs_filename = file_prefix + "_obs"
np.savetxt(obs_filename,obs, delimiter=' ')

#
# 	def radiation_model(x, y, I, detectors, n_obs):
# 		sensor_response = P((x, y), I) # .astype(np.float64)
コード例 #4
0
def radiation_model_sampler(init_values):

    np.random.seed(init_values[3])

    x = mc.Uniform('x', lower=0, upper=246.615, value=init_values[0])
    y = mc.Uniform('y', lower=0, upper=176.333, value=init_values[1])
    I = mc.Uniform('I', lower=5e8, upper=5e10, value=init_values[2])

    n_obs = 10  #num observations per detector
    obs = np.loadtxt('obs.dat')

    #--- Setup Detectors ---#
    dA = 0.005806  # m^2
    r_d = np.loadtxt('det.dat')  #jk different order of the stuff
    detectors = [
        gefry3.Detector(i, 0.62, dA, 5) for i in r_d
    ]  # for each detector location, dwell time = 5.0, epsilon = 0.62 (efficiency)

    #--- Setup Domain ---#
    with open('./revised_geo.pkl') as f:
        geo = pickle.load(f)

    buildings = [gefry3.Solid(s.exterior.coords) for s in geo]
    bbox = [(0, 0), (250, 0), (250, 178), (0, 178), (0, 0)]
    domain = gefry3.Domain(bbox, buildings)  #geo is a list of shapely polygons

    sigmas = np.loadtxt(
        'cross_sec.dat')  #these go in the interstitial materials component?
    materials = [
        gefry3.Material(1, s) for s in sigmas
    ]  #this is a bit of a hack, these are the building cross sections

    interstitial_material = gefry3.Material(
        1, 0
    )  #cross section of the air the gammas are moving through (but we don't have this?)
    # I don't think this is correct, but let's try it
    #domain = gefry2.Domain(geo, sigma)

    #--- Setup Source ---#
    true_source = gefry3.Source((158, 98), 3.214e9)

    #--- Initalize Radiation Model ---#
    #P = gefry2.Problem(domain, detectors, S, 300)
    P = gefry3.SimpleProblem(domain, interstitial_material, materials,
                             true_source, detectors)

    #print(P((158,98),3.214e9))
    background_count = 300

    def radiation_model(x, y, I, detectors, n_obs):
        sensor_response = P((x, y), I)  # .astype(np.float64)
        return (sensor_response)

    #Likelihood
    @mc.stochastic(observed=True)
    def rad_counts(value=obs, x=x, y=y, I=I):
        output = np.rint(P((x, y), I)) + background_count
        LogLik = 0
        for i in range(0, n_obs):
            LogLik = LogLik + (np.sum(obs[:, i] * np.log(output[i])) -
                               n_obs * output[i])
            return LogLik

    model = mc.MCMC([x, y, I, rad_counts])
    model.use_step_method(mc.AdaptiveMetropolis, [x, y, I],
                          shrink_if_necessary=True)
    #model.sample(iter=10**4+3000, burn=3000)
    model.sample(iter=20, burn=0, verbose=0)  #testing purposes

    # Chains
    samples_x = model.trace('x')[:]
    samples_y = model.trace('y')[:]
    samples_I = model.trace('I')[:]
    chain = np.vstack((samples_x, samples_y, samples_I)).T
    file_name = 'radiation_chain%d.txt' % (init_values[4])
    np.savetxt(file_name, chain, delimiter=',')
    return 0