コード例 #1
0
    def __init__(self, maze_dims, action_dim, act_proc_dim, z_dim,
                 x_encoder_specs, pre_gru_specs, gru_specs, prior_part_specs,
                 inference_part_specs, decoder_part_specs, masked_latent):
        super().__init__()

        self.act_proc_dim = act_proc_dim
        self.action_fc = nn.Linear(action_dim, self.act_proc_dim, bias=True)

        in_ch = maze_dims[0]
        in_h = maze_dims[1]
        self.x_encoder, out_ch, out_h = make_conv_net(in_ch, in_h,
                                                      x_encoder_specs)
        x_enc_channels = out_ch
        x_enc_h = out_h
        self.x_enc_ch = out_ch
        self.x_enc_h = out_h
        flat_x_enc_dim = x_enc_channels * x_enc_h * x_enc_h

        self.prior_fc_seq, hidden_dim = make_fc_net(
            self.act_proc_dim + gru_specs['hidden_size'], prior_part_specs)
        self.prior_mean_fc = nn.Linear(hidden_dim, z_dim, bias=True)
        self.prior_log_cov_fc = nn.Linear(hidden_dim, z_dim, bias=True)

        self.posterior_fc_seq, hidden_dim = make_fc_net(
            self.act_proc_dim + gru_specs['hidden_size'] + flat_x_enc_dim,
            inference_part_specs)
        self.posterior_mean_fc = nn.Linear(hidden_dim, z_dim, bias=True)
        self.posterior_log_cov_fc = nn.Linear(hidden_dim, z_dim, bias=True)

        self.pre_gru_seq, hidden_dim = make_fc_net(
            self.act_proc_dim + flat_x_enc_dim + z_dim, pre_gru_specs)

        self.gru_cell = nn.GRUCell(hidden_dim,
                                   gru_specs['hidden_size'],
                                   bias=True)
        self.h_dim = [gru_specs['hidden_size']]

        # models for the decoding/generation
        self.recon_fc_seq, out_h = make_fc_net(z_dim + self.h_dim[0],
                                               decoder_part_specs['fc_part'])
        assert out_h == x_enc_h * x_enc_h * x_enc_channels
        # just for convenience we use these dims
        self.recon_upconv_seq, out_ch, out_h = make_upconv_net(
            x_enc_channels, x_enc_h, decoder_part_specs['conv_part'])
        self.recon_mean_conv = nn.Conv2d(out_ch,
                                         3,
                                         3,
                                         stride=1,
                                         padding=1,
                                         bias=True)
        self.recon_log_cov_conv = nn.Conv2d(out_ch,
                                            3,
                                            3,
                                            stride=1,
                                            padding=1,
                                            bias=True)
        assert out_h == maze_dims[1]
コード例 #2
0
    def __init__(self, maze_dims, action_dim, act_proc_dim, z_dim,
                 x_encoder_specs, pre_gru_specs, gru_specs, prior_part_specs,
                 inference_part_specs, decoder_part_specs, masked_latent):
        super().__init__()

        self.act_proc_dim = act_proc_dim
        self.action_fc = nn.Linear(action_dim, self.act_proc_dim, bias=True)

        in_ch = maze_dims[0]
        in_h = maze_dims[1]
        maze_flat_dim = in_ch * in_h * in_h
        self.maze_dims = maze_dims
        self.x_encoder, out_h = make_fc_net(in_h * in_h * in_ch,
                                            x_encoder_specs)
        self.x_enc_h = out_h

        self.prior_fc_seq, hidden_dim = make_fc_net(
            self.act_proc_dim + gru_specs['hidden_size'], prior_part_specs)
        self.prior_mean_fc = nn.Linear(hidden_dim, z_dim, bias=True)
        self.prior_log_cov_fc = nn.Linear(hidden_dim, z_dim, bias=True)

        self.posterior_fc_seq, hidden_dim = make_fc_net(
            self.act_proc_dim + gru_specs['hidden_size'] + self.x_enc_h,
            inference_part_specs)
        self.posterior_mean_fc = nn.Linear(hidden_dim, z_dim, bias=True)
        self.posterior_log_cov_fc = nn.Linear(hidden_dim, z_dim, bias=True)

        self.pre_gru_seq, hidden_dim = make_fc_net(
            self.act_proc_dim + self.x_enc_h + z_dim, pre_gru_specs)

        self.gru_cell = nn.GRUCell(hidden_dim,
                                   gru_specs['hidden_size'],
                                   bias=True)
        self.h_dim = [gru_specs['hidden_size']]

        # models for the decoding/generation
        self.recon_fc_seq, out_h = make_fc_net(z_dim + self.h_dim[0],
                                               decoder_part_specs['fc_part'])
        self.recon_mean_fc = nn.Linear(out_h, maze_flat_dim, bias=True)
        self.recon_log_cov_fc = nn.Linear(out_h, maze_flat_dim, bias=True)

        ae_dim = 256
        self.autoencoder = nn.Sequential(nn.Linear(48, ae_dim, bias=False),
                                         nn.BatchNorm1d(ae_dim), nn.ReLU(),
                                         nn.Linear(ae_dim, ae_dim, bias=False),
                                         nn.BatchNorm1d(ae_dim), nn.ReLU(),
                                         nn.Linear(ae_dim, ae_dim, bias=False),
                                         nn.BatchNorm1d(ae_dim), nn.ReLU())
        # self.autoencoder, _ = make_fc_net(
        #     maze_flat_dim,
        #     {
        #         'hidden_sizes': [128, 128, 32, 128, 128],
        #         'use_bn': True
        #     }
        # )
        self.fc = nn.Linear(ae_dim, 48, bias=True)
コード例 #3
0
    def __init__(
        self,
        maze_dims,
        action_proc_dim,
        z_dim,
        x_encoder_specs,
        pre_lstm_dim,
        lstm_dim,
        prior_part_specs,
        inference_part_specs,
        decoder_part_specs,
    ):
        super().__init__()

        in_ch = maze_dims[0]
        in_h = maze_dims[1]
        self.x_encoder, out_ch, out_h = make_conv_net(in_ch, in_h, x_encoder_specs)
        x_enc_channels = out_ch
        x_enc_h = out_h

        self.prior_action_fc = nn.Linear(4, action_proc_dim, bias=True)
        self.post_action_fc = nn.Linear(4, action_proc_dim, bias=True)
        self.recon_action_fc = nn.Linear(4, action_proc_dim, bias=True)
        self.pre_lstm_action_fc = nn.Linear(4, action_proc_dim, bias=True)

        self.lstm = nn.LSTMCell(
            pre_lstm_dim, lstm_dim, bias=True
        )

        self.attention_seq = nn.Sequential(
            nn.Linear(lstm_dim + action_proc_dim, lstm_dim, bias=False),
            nn.BatchNorm1d(lstm_dim),
            nn.ReLU(),
            nn.Linear(lstm_dim, lstm_dim),
            # nn.Sigmoid()
            # nn.Softmax()
        )

        self.prior_fc_seq, hidden_dim = make_fc_net(lstm_dim + action_proc_dim, prior_part_specs)
        self.prior_mean_fc = nn.Linear(hidden_dim, z_dim, bias=True)
        self.prior_log_cov_fc = nn.Linear(hidden_dim, z_dim, bias=True)

        out_ch = gru_specs['num_channels']

        # models for the posterior
        self.posterior_fc_seq, hidden_dim = make_fc_net(lstm_dim + x_enc_channels*x_enc_h*x_enc_h + action_proc_dim, inference_part_specs)
        self.posterior_mean_fc = nn.Linear(hidden_dim, z_dim, bias=True)
        self.posterior_log_cov_fc = nn.Linear(hidden_dim, z_dim, bias=True)

        # models for the decoding/generation
        self.recon_fc_seq, out_h = make_fc_net(z_dim + lstm_dim + action_proc_dim, decoder_part_specs['fc_part_specs'])
        self.recon_upconv_seq, out_ch, out_h = make_upconv_net(gru_specs['num_channels'] + z_dim, self.h_dim[1], decoder_part_specs['upconv_part_specs'])
        self.recon_mean_conv = nn.Conv2d(out_ch, 3, 3, stride=1, padding=1, bias=True)
        self.recon_log_cov_conv = nn.Conv2d(out_ch, 3, 3, stride=1, padding=1, bias=True)
        assert out_h == maze_dims[1]
コード例 #4
0
    def __init__(
        self,
        maze_dims,
        z_dim,
        encoder_specs,
        decoder_specs
    ):
        super().__init__()

        in_ch = maze_dims[0]
        in_h = maze_dims[1]
        
        # make the encoder
        self.encoder_conv_seq, x_enc_ch, x_enc_h = make_conv_net(in_ch, in_h, encoder_specs['conv_part_specs'])
        self.x_enc_ch = x_enc_ch
        self.x_enc_h = x_enc_h
        flat_inter_img_dim = x_enc_ch * x_enc_h * x_enc_h


        self.z_mask_conv_seq, _, _ = make_conv_net(
            x_enc_ch, x_enc_h,
            {
                'kernel_sizes': [3],
                'num_channels': [64],
                'strides': [1],
                'paddings': [1],
                'use_bn': True
            }
        )
        self.z_mask_fc_seq, _ = make_fc_net(64*x_enc_h*x_enc_h, {'hidden_sizes': [1024], 'use_bn':True})
        self.z_mask_fc = nn.Linear(1024, 128, bias=True)

        self.z_mask_gen_fc_seq, _ = make_fc_net(128, {'hidden_sizes': [1024, 4*x_enc_h*x_enc_h], 'use_bn':True})
        self.z_mask_gen_conv = nn.Conv2d(4, 1, 3, stride=1, padding=1, bias=True)

        self.encoder_fc_seq, h_dim = make_fc_net(flat_inter_img_dim, encoder_specs['fc_part_specs'])

        self.z_mean_fc = nn.Linear(h_dim, z_dim, bias=True)
        self.z_log_cov_fc = nn.Linear(h_dim, z_dim, bias=True)

        # make the decoder
        self.decoder_fc_seq, h_dim = make_fc_net(z_dim, decoder_specs['fc_part_specs'])
        # assert h_dim == flat_inter_img_dim
        self.decoder_upconv_seq, out_ch, out_h = make_upconv_net(x_enc_ch, x_enc_h, decoder_specs['upconv_part_specs'])

        self.recon_mean_conv = nn.Conv2d(out_ch, 1, 1, stride=1, padding=0, bias=True)
        self.recon_log_cov_conv = nn.Conv2d(out_ch, 1, 1, stride=1, padding=0, bias=True)
        assert out_h == maze_dims[1], str(out_h) + ' != ' + str(maze_dims[1])
コード例 #5
0
ファイル: flat_vrnn.py プロジェクト: yifan-you-37/rl_swiss
    def __init__(self, maze_dims, action_dim, act_proc_dim, z_dim,
                 x_encoder_specs, pre_gru_specs, gru_specs, prior_part_specs,
                 inference_part_specs, decoder_part_specs, masked_latent):
        super().__init__()

        self.act_proc_dim = act_proc_dim
        self.action_fc = nn.Linear(action_dim, self.act_proc_dim, bias=True)

        in_ch = maze_dims[0]
        in_h = maze_dims[1]
        maze_flat_dim = in_ch * in_h * in_h
        self.maze_dims = maze_dims
        self.x_encoder, out_h = make_fc_net(in_h * in_h * in_ch,
                                            x_encoder_specs)
        self.x_enc_h = out_h

        self.prior_fc_seq, hidden_dim = make_fc_net(
            self.act_proc_dim + gru_specs['hidden_size'], prior_part_specs)
        self.prior_mean_fc = nn.Linear(hidden_dim, z_dim, bias=True)
        self.prior_log_cov_fc = nn.Linear(hidden_dim, z_dim, bias=True)

        self.posterior_fc_seq, hidden_dim = make_fc_net(
            self.act_proc_dim + gru_specs['hidden_size'] + self.x_enc_h,
            inference_part_specs)
        self.posterior_mean_fc = nn.Linear(hidden_dim, z_dim, bias=True)
        self.posterior_log_cov_fc = nn.Linear(hidden_dim, z_dim, bias=True)

        self.pre_gru_seq, hidden_dim = make_fc_net(
            self.act_proc_dim + self.x_enc_h + z_dim, pre_gru_specs)

        self.gru_cell = nn.GRUCell(hidden_dim,
                                   gru_specs['hidden_size'],
                                   bias=True)
        self.h_dim = [gru_specs['hidden_size']]

        # models for the decoding/generation
        self.recon_fc_seq, out_h = make_fc_net(z_dim + self.h_dim[0],
                                               decoder_part_specs['fc_part'])
        self.recon_mean_fc = nn.Linear(out_h, maze_flat_dim, bias=True)
        self.recon_log_cov_fc = nn.Linear(out_h, maze_flat_dim, bias=True)
コード例 #6
0
ファイル: normal_vae.py プロジェクト: yifan-you-37/rl_swiss
    def __init__(self, maze_dims, z_dim, encoder_specs, decoder_specs):
        super().__init__()

        in_ch = maze_dims[0]
        in_h = maze_dims[1]

        # make the encoder
        self.encoder_conv_seq, x_enc_ch, x_enc_h = make_conv_net(
            in_ch, in_h, encoder_specs['conv_part_specs'])
        self.x_enc_ch = x_enc_ch
        self.x_enc_h = x_enc_h
        flat_inter_img_dim = x_enc_ch * x_enc_h * x_enc_h

        self.encoder_fc_seq, h_dim = make_fc_net(
            flat_inter_img_dim, encoder_specs['fc_part_specs'])

        self.z_mean_fc = nn.Linear(h_dim, z_dim, bias=True)
        self.z_log_cov_fc = nn.Linear(h_dim, z_dim, bias=True)

        # make the decoder
        self.decoder_fc_seq, h_dim = make_fc_net(
            z_dim, decoder_specs['fc_part_specs'])
        assert h_dim == flat_inter_img_dim
        self.decoder_upconv_seq, out_ch, out_h = make_upconv_net(
            x_enc_ch, x_enc_h, decoder_specs['upconv_part_specs'])

        self.recon_mean_conv = nn.Conv2d(out_ch,
                                         1,
                                         1,
                                         stride=1,
                                         padding=0,
                                         bias=True)
        self.recon_log_cov_conv = nn.Conv2d(out_ch,
                                            1,
                                            1,
                                            stride=1,
                                            padding=0,
                                            bias=True)
        assert out_h == maze_dims[1], str(out_h) + ' != ' + str(maze_dims[1])
コード例 #7
0
ファイル: meshgrid_vae.py プロジェクト: yifan-you-37/rl_swiss
    def __init__(self, maze_dims, z_dim, encoder_specs, decoder_specs):
        super().__init__()

        in_ch = maze_dims[0]
        in_h = maze_dims[1]

        # make the encoder
        self.encoder_conv_seq, x_enc_ch, x_enc_h = make_conv_net(
            in_ch, in_h, encoder_specs['conv_part_specs'])
        self.x_enc_ch = x_enc_ch
        self.x_enc_h = x_enc_h
        flat_inter_img_dim = x_enc_ch * x_enc_h * x_enc_h

        self.enc_mask_seq, _, _ = make_conv_net(
            x_enc_ch, x_enc_h, {
                'kernel_sizes': [3],
                'num_channels': [64],
                'strides': [2],
                'paddings': [1],
                'use_bn': True
            })
        self.enc_mask_conv = nn.Conv2d(64,
                                       1,
                                       1,
                                       stride=1,
                                       padding=0,
                                       bias=True)

        # meshgrid
        xv, yv = np.meshgrid(np.linspace(-1., 1., x_enc_h),
                             np.linspace(-1., 1., x_enc_h))
        xv, yv = xv[None, None, ...], yv[None, None, ...]
        xv, yv = torch.FloatTensor(xv), torch.FloatTensor(yv)
        self.mesh = torch.cat([xv, yv], 1)
        self.mesh = Variable(self.mesh, requires_grad=False).cuda()

        self.encoder_fc_seq, h_dim = make_fc_net(
            flat_inter_img_dim, encoder_specs['fc_part_specs'])

        self.z_mean_fc = nn.Linear(h_dim, z_dim, bias=True)
        self.z_log_cov_fc = nn.Linear(h_dim, z_dim, bias=True)

        # make the decoder
        self.decoder_fc_seq, h_dim = make_fc_net(
            z_dim, decoder_specs['fc_part_specs'])
        # assert h_dim == flat_inter_img_dim
        self.decoder_upconv_seq, out_ch, out_h = make_upconv_net(
            130, x_enc_h, decoder_specs['upconv_part_specs'])

        self.recon_mean_conv = nn.Conv2d(out_ch,
                                         1,
                                         1,
                                         stride=1,
                                         padding=0,
                                         bias=True)
        self.recon_log_cov_conv = nn.Conv2d(out_ch,
                                            1,
                                            1,
                                            stride=1,
                                            padding=0,
                                            bias=True)
        assert out_h == maze_dims[1], str(out_h) + ' != ' + str(maze_dims[1])
コード例 #8
0
    def __init__(self, maze_dims, z_dim, x_encoder_specs, z_seg_conv_specs,
                 z_seg_fc_specs, z_obj_conv_specs, z_obj_fc_specs,
                 z_seg_recon_fc_specs, z_seg_recon_upconv_specs,
                 z_obj_recon_fc_specs, z_obj_recon_upconv_specs,
                 recon_upconv_part_specs):
        super().__init__()

        in_ch = maze_dims[0]
        in_h = maze_dims[1]
        self.x_encoder, x_enc_ch, x_enc_h = make_conv_net(
            in_ch, in_h, x_encoder_specs)
        self.x_enc_ch = x_enc_ch
        self.x_enc_h = x_enc_h
        flat_inter_img_dim = x_enc_ch * x_enc_h * x_enc_h

        # self.convgru = ConvGRUCell(x_enc_ch, gru_specs['channels'], gru_specs['kernel_size'])
        # self.gru_ch = gru_specs['channels']

        self.z_seg_conv_seq, out_ch, out_h = make_conv_net(
            x_enc_ch + 1, x_enc_h, z_seg_conv_specs)
        self.z_seg_fc_seq, out_h = make_fc_net(out_ch * out_h * out_h,
                                               z_seg_fc_specs)
        self.z_seg_mean_fc = nn.Linear(out_h, z_dim, bias=True)
        self.z_seg_log_cov_fc = nn.Linear(out_h, z_dim, bias=True)

        # self.z_obj_conv_seq, z_conv_ch, z_conv_h = make_conv_net(x_enc_ch, x_enc_h, z_obj_conv_specs)
        # flat_dim = z_conv_ch*z_conv_h*z_conv_h
        # self.z_conv_ch, self.z_conv_h = z_conv_ch, z_conv_h
        self.z_obj_fc_seq, out_h = make_fc_net(flat_inter_img_dim,
                                               z_obj_fc_specs)
        self.z_obj_mean_fc = nn.Linear(out_h, z_dim, bias=True)
        self.z_obj_log_cov_fc = nn.Linear(out_h, z_dim, bias=True)

        self.z_seg_mask_fc_seq, out_h = make_fc_net(z_dim,
                                                    z_seg_recon_fc_specs)
        # print(out_h)
        # print(z_conv_ch, z_conv_h)
        # assert out_h == z_conv_h*z_conv_h*z_conv_ch
        self.z_seg_mask_upconv_seq, out_ch, out_h = make_upconv_net(
            x_enc_ch, x_enc_h, z_seg_recon_upconv_specs)
        self.z_seg_mask_conv = nn.Conv2d(out_ch,
                                         1,
                                         3,
                                         stride=1,
                                         padding=1,
                                         bias=True)
        print(out_h)

        self.z_obj_recon_fc_seq, z_recon_dim = make_fc_net(
            z_dim, z_obj_recon_fc_specs)
        # self.z_obj_recon_upconv_seq, out_ch, out_h = make_upconv_net(z_conv_ch, z_conv_h, z_obj_recon_upconv_specs)
        self.recon_upconv_seq, out_ch, out_h = make_upconv_net(
            x_enc_ch, x_enc_h, recon_upconv_part_specs)
        print(out_h)
        self.recon_mean_conv = nn.Conv2d(out_ch,
                                         1,
                                         1,
                                         stride=1,
                                         padding=0,
                                         bias=True)
        self.recon_log_cov_conv = nn.Conv2d(out_ch,
                                            1,
                                            1,
                                            stride=1,
                                            padding=0,
                                            bias=True)
        assert out_h == maze_dims[1], str(out_h) + ' != ' + str(maze_dims[1])