def get_gender(): """ This API returns the predicted gender of all faces detected in an image. Call this api passing a coloured image. --- tags: - Image Analyzer consumes: - multipart/form-data produces: -application/json parameters: - in: formData name: upfile type: file required: true description: Upload your file responses: 500: description: Error, something went wrong! 200: description: Detection success! """ response = None iFile = request.files.getlist('upfile')[0] img = load_image(iFile) img = rotate_image(img, iFile) img = limit_size_image(img) model = Gender(img) response = model.get_prediction() return jsonify(response)
def lambda_handler(event, context): if 'body' in event: item = json.loads(event.pop('body', event)) else: item = event dto = Gender(item) ret_val = dto.update() response = {'statusCode': 200, 'body': json.dumps({'result': ret_val})} return response
def lambda_handler(event, context): if 'queryStringParameters' in event: item = event.pop('queryStringParameters') if isinstance(item, str): item = literal_eval(item) else: item = event dto = Gender(item) ret_val = dto.delete() response = {'statusCode': 200, 'body': json.dumps({'result': ret_val})} return response
def lambda_handler(event, context): if 'queryStringParameters' in event: item = event.pop('queryStringParameters') if isinstance(item, str): item = literal_eval(item) else: item = event dto = Gender(item) return_item = dto.read() response = { 'statusCode': 200, "body": json.dumps(return_item), } return response
def scrap_profiles(self): instadir = open("instarank.csv", "w") output = csv.writer(instadir, delimiter=',') profiles = [] while (True): time.sleep(1) profileName = self.get_post_profName() profileLocation = self.get_post_location() postTime = self.get_post_time() likes = self.get_post_likes() imageAlt = self.get_image_alt() tgender = Gender(profileName) print(profileName + ' @ ' + profileLocation + ' ' + str(postTime) + ' ' + str(likes) + " " + str(tgender)) if (tgender == "null" or tgender == "female"): tprofile = [ profileName, profileLocation, postTime, imageAlt, likes, tgender ] self.writeToCsv(tprofile, output) print("t scraped") time.sleep(1) try: self.go_to_next() except Exception as e: print('No next')
def load_models(path): global gender, expression, multiple, face_detection, landmarks2d, landmarks3d gender = Gender(os.path.join(path, "gender.zip")) expression = Expression(os.path.join(path, "expression.zip")) multiple = Multiple(os.path.join(path, "multiple")) face_detection = FaceDetection(os.path.join(path, "face_detection")) landmarks2d = LandMarks2D(path) landmarks3d = LandMarks3D(path)
def gender(): name = request.form['name'] test = Gender(name) answer = test.run() print answer return render_template('gender.html', data=answer)