def post(self, request, **kwargs): if 'submit' in request.POST: name=request.POST['name'] gp = GenderPredictor() gp.train_and_test() detected_gender = gp.classify(name) context = { "name" : name, "gender": detected_gender } return render(request, 'gender_app/predict_gender.html',context)
col3.append(10) col3.append(10) col3.append(12) col3.append(10) col3.append(11) col3.append(12) col3.append(10) col3.append(10) col3.append(9) col3.append(9) col3.append(9) print(len(col3)) data_dict['Grade'] = col3 print(len(data_dict['Grade'])) # Getting the gender gen = GenderPredictor() gen.train_and_test() col4 = [gen.classify(i.split(" ")[0]) for i in col1] print(col4) data_dict['Gender'] = col4 df = pd.DataFrame.from_dict(data_dict) df.head() df.replace('M', 'male', inplace=True) df.replace('F', 'female', inplace=True) df.to_csv("data/m132-student-data.csv")
import pandas as pd from os import getcwd, listdir from gender_predictor import GenderPredictor # Get the Student Data data_path = getcwd() + "/data" listdir(data_path) df = pd.read_csv(f"{data_path}/{listdir(data_path)[0]}") # Instantiate the Class gp = GenderPredictor() # Train the Model gp.train_and_test() # Get List of Students' First Names student_names = [name.split(" ")[0] for name in df['Student Name'].tolist()] # Get Predictions gender_preds = [gp.classify(name) for name in student_names] # Add Gender Column to the Data Frame df['Gender'] = gender_preds # Save New Data df.to_csv(f"{data_path}/{listdir(data_path)[0]}", index=False) df['Gender']