コード例 #1
0
def main():
    with open('smartphone_classifier', 'rb') as classifier:
        # Load the trained model and X and y values
        model = pickle.load(classifier)
        X, y = load_dataset()

        # Classify as 'smartphone' or 'nao-smartphone'
        y_pred = model.predict(X)

        # Print the results
        print("Matriz de confusao: ")
        print(confusion_matrix(y, y_pred))
        print("Resumo:")
        print(classification_report(y, y_pred))
        print("Acuracia:", round((accuracy_score(y, y_pred) * 100), 4), "%")

        generate_output_file(y_pred)

        return True
コード例 #2
0
Format of the input configuration: additional features. Possible options:
-BASE: no changes; simple count
-TD: adds time dependency in the count
-EMI: mutual information extened matrix (sensor event window adjency)
-TD+EMI: combination of TD and EMI
-ALL: iteration that serves to test all possible input configurations
"""

if __name__ == "__main__":
    #Reading the inputs
    if len(sys.argv) < 4:
        #Bad usage of the command
        msg_error(USAGE)
    
    #Selecting the dataset
    dataset, dataset_name = load_dataset(sys.argv[3])
    
    #Divide the testing and training data
    try:
        int_data = dataset.obtaining_data()
    except Exception as exc:
        msg_error(exc)
    
    #Selecting which features to test
    if sys.argv[1] == "ALL":
        features = POSIBLE_FEATURE_CONFIG.copy()
    elif sys.argv[1] in POSIBLE_FEATURE_CONFIG:
        features = [sys.argv[1]]
    else:
        #Unkown feature
        msg_error("Unkown feature: " + sys.argv[1])