コード例 #1
0
    def runTest(self):
        rot=np.array([[-0.5057639,-0.1340537,0.8521928], \
                      [0.6456962,-0.7139224,0.2709081], \
                      [0.5720833,0.6872731,0.4476342]])

        q_t = np.array([0.2387194, 0.4360402, 0.2933459, 0.8165967])
        q = rox.R2q(rot)
        np.testing.assert_allclose(q_t, q, atol=1e-6)
コード例 #2
0
    def plan_robot_motion(self, dxf_points, sines):
        self.dxf_points = dxf_points
        self.sines = sines
        waypoints = []
        message = rospy.wait_for_message("/robot_status", RobotStatus)
        joint_state = rospy.wait_for_message("/joint_states", JointState)
        while (message.in_motion.val == 1):
            message = rospy.wait_for_message("/robot_status", RobotStatus)
        #self.move_group.clear_pose_targets()

        moveit_robot_state = RobotState()
        moveit_robot_state.joint_state = joint_state
        self.move_group.set_start_state(moveit_robot_state)
        #wpose = self.move_group.get_current_pose().pose
        #waypoints.append(wpose)
        #state = self.robot.get_current_state()
        #self.move_group.set_start_state(state)
        for i in range(len(dxf_points)):
            pose_goal = Pose()
            rpy = [math.pi, 0.0, sines[i]]
            print(rpy)
            R_result = rox.rpy2R(rpy)
            quat = rox.R2q(R_result)
            print(quat)
            pose_goal.orientation.w = 0.0
            pose_goal.orientation.x = quat[1]
            pose_goal.orientation.y = quat[2]
            pose_goal.orientation.z = 0.0
            #20- sets setpoint in middle of dxf file for robot y axis
            #middle of dxf y axis is 0, so no centering needed here
            x_val = (20 - dxf_points[i][0]) * 0.0254
            y_val = dxf_points[i][1] * 0.0254
            pose_goal.position.x = 0.8 + y_val
            pose_goal.position.y = x_val
            pose_goal.position.z = 0.3
            print(pose_goal)

            waypoints.append(pose_goal)

        replan_value = 0
        error_code = None
        (plan, fraction) = self.move_group.compute_cartesian_path(
            waypoints,  # waypoints to follow
            0.01,  # eef_step
            0.0)  # jump_threshold

        while (replan_value < 3 and fraction < 1.0):
            print(fraction)
            (plan, fraction) = self.move_group.compute_cartesian_path(
                waypoints,  # waypoints to follow
                0.01,  # eef_step
                0.0)  # jump_threshold
            replan_value += 1
            print("WARNING Portion of plan failed, replanning")

        return plan, fraction, waypoints
コード例 #3
0
    def runTest(self):

        q_1 = np.array([0.63867877, 0.52251797, 0.56156573, 0.06089615])
        q_2 = np.array([0.35764716, 0.61051424, 0.11540801, 0.69716703])
        R_t = rox.q2R(q_1).dot(rox.q2R(q_2))
        q_t = rox.R2q(R_t)

        q = rox.quatproduct(q_1).dot(q_2).reshape((4, ))

        np.testing.assert_allclose(q, q_t, atol=1e-6)
def test_geometry_util_array_types():
    node = RR.RobotRaconteurNode()
    node.SetLogLevelFromString("DEBUG")
    node.Init()

    try:
        RRC.RegisterStdRobDefServiceTypes(node)
        geom_util = GeometryUtil(node)
        _do_array_test(geom_util.xy_to_vector2, geom_util.vector2_to_xy, (2, ),
                       "Vector2", node)
        _do_array_test(geom_util.xyz_to_vector3, geom_util.vector3_to_xyz,
                       (3, ), "Vector3", node)
        _do_array_test(geom_util.abgxyz_to_vector6,
                       geom_util.vector6_to_abgxyz, (6, ), "Vector6", node)
        _do_array_test(geom_util.xy_to_point2d, geom_util.point2d_to_xy, (2, ),
                       "Point2D", node)
        _do_array_test(geom_util.xyz_to_point, geom_util.point_to_xyz, (3, ),
                       "Point", node)
        _do_array_test(geom_util.wh_to_size2d, geom_util.size2d_to_wh, (2, ),
                       "Size2D", node)
        _do_array_test(geom_util.whd_to_size, geom_util.size_to_whd, (3, ),
                       "Size", node)
        _do_array_test(geom_util.q_to_quaternion, geom_util.quaternion_to_q,
                       (3, ), "Quaternion", node,
                       lambda a: rox.R2q(rox.rpy2R(a)))
        _do_array_test(geom_util.R_to_quaternion, geom_util.quaternion_to_R,
                       (3, ), "Quaternion", node, lambda a: rox.rpy2R(a))
        _do_array_test(geom_util.rpy_to_quaternion,
                       geom_util.quaternion_to_rpy, (3, ), "Quaternion", node)
        _do_array_test(geom_util.array_to_spatial_velocity,
                       geom_util.spatial_velocity_to_array, (6, ),
                       "SpatialVelocity", node)
        _do_array_test(geom_util.array_to_spatial_acceleration,
                       geom_util.spatial_acceleration_to_array, (6, ),
                       "SpatialAcceleration", node)
        _do_array_test(geom_util.array_to_wrench, geom_util.wrench_to_array,
                       (6, ), "Wrench", node)

    finally:
        node.Shutdown()
コード例 #5
0
    def move_to_seam_start(self, motion_point, sine):

        pose_goal = Pose()
        rpy = [math.pi, 0.0, sine - math.pi / 2]
        print(rpy)
        R_result = rox.rpy2R(rpy)
        quat = rox.R2q(R_result)
        print(quat)
        pose_goal.orientation.w = 0.0
        pose_goal.orientation.x = quat[1]
        pose_goal.orientation.y = quat[2]
        pose_goal.orientation.z = 0.0
        #20- sets setpoint in middle of dxf file for robot y axis
        #middle of dxf y axis is 0, so no centering needed here
        x_val = (20 - motion_point[0]) * 0.0254
        y_val = motion_point[1] * 0.0254
        pose_goal.position.x = 0.8 + y_val

        pose_goal.position.y = x_val
        pose_goal.position.z = 0.3
        pose_goal.position.x += 0.1
        #self.robot.set_start_state_to_current_state()
        self.move_group.set_pose_target(pose_goal)
        result = self.move_group.go(wait=True)
コード例 #6
0
def main():
    # initialize EGM interface instance
    egm = rpi_abb_irc5.EGM()

    # initialize a robot instance
    abb_robot = abb_irb6640_180_255_robot()

    # desired force
    #Fd = 1000

    # desired velocity in y
    #vdy = -0.5

    # feedback gain
    Kp = 0.0002
    Kd = 0.0008
    Ki = 0.0004

    # time step
    delta_t = 0.004

    # initial configuration in degree
    init = [-91.85, 2.53, 38.20, 0.00, 49.27, -1.85]

    n = 2000

    # quadprog to solve for joint velocity
    quadprog = qp.QuadProg(abb_robot)

    # force sensor interface
    try:
        if (len(sys.argv) < 2):
            raise Exception('IP address of ATI Net F/T sensor required')
        host = sys.argv[1]
        netft = rpi_ati_net_ft.NET_FT(host)
        netft.set_tare_from_ft()

        netft.start_streaming()
    except KeyboardInterrupt:
        pass

    ####### trapezoidal desired force in z #######
    tt = np.linspace(0, 4 * np.pi, n)
    desired_f = np.zeros((1, n))
    vdy = np.zeros((1, n))

    # form trap force and trap motion
    for i in range(n):
        if tt[i] >= 0 and tt[i] < np.pi:
            desired_f[0, i] = 50 + 302 * tt[i]
            vdy[0, i] = -0.2 * tt[i]
        elif tt[i] >= np.pi and tt[i] < 3 * np.pi:
            desired_f[0, i] = 50 + 302 * np.pi
            vdy[0, i] = -0.2 * np.pi
        else:
            desired_f[0, i] = 50 + 302 * np.pi - 302 * (tt[i] - 3 * np.pi)
            vdy[0, i] = -0.2 * np.pi + 0.2 * (tt[i] - 3 * np.pi)
    #plt.plot(vdy[0, :])
    #plt.show()

    ######## change here ########
    #pos = 0
    #acce = 0
    #v_l_pre = 0
    #########

    # output force
    force_out = np.zeros((6, n))

    # pos of eef
    eef_pos = np.zeros((3, n))
    eef_orien = np.zeros((4, n))

    # timestamp
    tim = np.zeros((1, n))

    # referece height of coupon that achieves desired force
    z_ref = 0.89226
    x_ref = 0
    y_ref = -1.35626

    # determine if robot has reached the initial configuration init
    tag = True
    while tag:
        res, state = egm.receive_from_robot(.1)
        if res:
            #print sum(np.rad2deg(state.joint_angles))- sum(init)
            if np.fabs(sum(np.rad2deg(state.joint_angles)) - sum(init)) < 1e-3:
                tag = False

    time.sleep(1)
    print '--------start force control--------'

    ### drain the force sensor buffer ###
    for i in range(1000):
        flag, ft = netft.read_ft_streaming(.1)

    ### drain the EGM buffer ###
    for i in range(1000):
        res, state = egm.receive_from_robot(.1)

    flag, ft = netft.read_ft_streaming(.1)
    F0 = ft[5]
    print F0
    time.sleep(2)

    cnt = 0
    while cnt < n:
        # receive EGM feedback
        res, state = egm.receive_from_robot(.1)

        if not res:
            continue

# forward kinematics
        pose = rox.fwdkin(abb_robot, state.joint_angles)
        R = pose.R
        flag, ft = netft.read_ft_streaming(.1)

        # map torque/force from sensor frame to base frame
        T_b = np.matmul(R, ft[0:3])
        F_b = np.matmul(R, ft[3:None])
        F = F_b[2]  # first three torques and then three forces

        Fd0 = 50
        # do not start motion in y until robot barely touches coupon (50 N)
        if F < Fd0 - 0.1 and cnt == 0:
            z = pose.p[2]
            # account for the robot base and length of tool
            z = z + 0.026 - 0.18 + 0.00353
            # will shake if gain too large, here use 0.0002
            v_z = Kp * 10 * (F - Fd0)
            v_l = np.array([0, 0, v_z])
        else:
            # deadzone for Fx
            if abs(F_b[0]) < 30:
                F_x = 0

            # deadzone for Fy
            if abs(F_b[1]) < 30:
                F_y = 0

            v_x = Kp / 2 * (F_x - 0)
            v_y = vdy[0, cnt] + Kp / 2 * (F_y - 0)
            z = pose.p[2]

            #print desired_f[0, cnt]
            # account for the robot base and length of tool
            z = z + 0.026 - 0.18 + 0.00353
            v_z = Kp * (F - desired_f[0, cnt])
            v_l = np.array([v_x, v_y, v_z])

            force_out[:, cnt] = np.concatenate((T_b, F_b), axis=0)

            eef_pos[:, cnt] = pose.p

            quat = rox.R2q(R)
            eef_orien[:, cnt] = quat
            tim[0, cnt] = time.time()

            cnt += 1

        print F

        #### change here ####
        #pos = pos + v_l[2]*delta_t
        #acce = (v_l[2]-v_l_pre)/delta_t

        # formalize entire twist
        spatial_velocity_command = np.array([0, 0, 0, v_l[0], v_l[1], v_l[2]])

        # emergency stop if force too large
        if abs(F) > 2000:
            spatial_velocity_command = np.array([0, 0, 0, 0, 0, 0])
            print "force too large, stop..."

        # solve for joint velocity
        # Jacobian inverse
        #J = rox.robotjacobian(abb_robot, state.joint_angles)
        #joints_vel = np.linalg.pinv(J).dot(spatial_velocity_command)

        # QP
        joints_vel = quadprog.compute_joint_vel_cmd_qp(
            state.joint_angles, spatial_velocity_command)

        # commanded joint position setpoint to EGM
        q_c = state.joint_angles + joints_vel * delta_t

        egm.send_to_robot(q_c)

        ####### change here ########
        #v_l_pre = v_l[2]

        #if t_new - t_pre < delta_t:
        #    time.sleep(delta_t - t_new + t_pre)

        if cnt == n:
            csv_dat = np.hstack((desired_f.T, vdy.T, force_out.T, eef_pos.T,
                                 eef_orien.T, tim.T))
            np.savetxt(
                'trap_force_trap_motion_020520.csv',
                csv_dat,
                fmt='%6.5f',
                delimiter=',')  #, header='desired joint, optimal input')
            print "done"
コード例 #7
0
    def trajopt_plan(self,
                     target_pose,
                     json_config_str=None,
                     json_config_name=None,
                     target_joints=None):

        with self.lock:

            if (json_config_str is None and json_config_name is not None):
                json_config_str = self.load_json_config(json_config_name)

            robot = self.controller_commander.rox_robot

            #vel_upper_lim = np.array(robot.joint_vel_limit) * speed_scalar
            #vel_lower_lim = -vel_upper_lim
            #joint_lower_limit = np.array(robot.joint_lower_limit)
            #joint_upper_limit = np.array(robot.joint_upper_limit)
            joint_names = robot.joint_names

            joint_positions = self.controller_commander.get_current_joint_values(
            )

            if target_pose is not None:
                p = PoseArray()
                p.header.frame_id = "world"
                p.header.stamp = rospy.Time.now()
                p.poses.append(
                    rox_msg.transform2pose_msg(
                        self.controller_commander.compute_fk(joint_positions)))
                p.poses.append(rox_msg.transform2pose_msg(target_pose))
                self.waypoint_plotter.publish(p)

            self.tesseract_env.setState(joint_names, joint_positions)

            init_pos = self.tesseract_env.getCurrentJointValues()
            self.tesseract_plotter.plotTrajectory(
                self.tesseract_env.getJointNames(),
                np.reshape(init_pos, (1, 6)))

            planner = tesseract.TrajOptPlanner()

            manip = "move_group"
            end_effector = "vacuum_gripper_tool"

            pci = tesseract.ProblemConstructionInfo(self.tesseract_env)

            pci.fromJson(json_config_str)

            pci.kin = self.tesseract_env.getManipulator(manip)

            pci.init_info.type = tesseract.InitInfo.STATIONARY
            #pci.init_info.dt=0.5

            if target_pose is not None:
                #Final target_pose constraint
                pose_constraint = tesseract.CartPoseTermInfo()
                pose_constraint.term_type = tesseract.TT_CNT
                pose_constraint.link = end_effector
                pose_constraint.timestep = pci.basic_info.n_steps - 1
                q = rox.R2q(target_pose.R)
                pose_constraint.wxyz = np.array(q)
                pose_constraint.xyz = np.array(target_pose.p)
                pose_constraint.pos_coefs = np.array(
                    [1000000, 1000000, 1000000], dtype=np.float64)
                pose_constraint.rot_coefs = np.array([10000, 10000, 10000],
                                                     dtype=np.float64)
                pose_constraint.name = "final_pose"
                pci.cnt_infos.push_back(pose_constraint)
            elif target_joints is not None:
                joint_constraint = tesseract.JointPosTermInfo()
                joint_constraint.term_type = tesseract.TT_CNT
                joint_constraint.link = end_effector
                joint_constraint.first_step = pci.basic_info.n_steps - 2
                joint_constraint.last_step = pci.basic_info.n_steps - 1
                #joint_constraint.coeffs = tesseract.DblVec([10000]*6)
                joint_constraint.targets = tesseract.DblVec(
                    list(target_joints))
                print target_joints
                pci.cnt_infos.push_back(joint_constraint)
            else:
                assert False

            prob = tesseract.ConstructProblem(pci)

            config = tesseract.TrajOptPlannerConfig(prob)

            config.params.max_iter = 1000

            planning_response = planner.solve(config)

            if (planning_response.status_code != 0):
                raise Exception(
                    "TrajOpt trajectory planning failed with code: %d" %
                    planning_response.status_code)

            self.tesseract_plotter.plotTrajectory(
                self.tesseract_env.getJointNames(),
                planning_response.trajectory[:, 0:6])

            jt = JointTrajectory()
            jt.header.stamp = rospy.Time.now()
            jt.joint_names = joint_names

            trajectory_time = np.cumsum(1.0 /
                                        planning_response.trajectory[:, 6])
            trajectory_time = trajectory_time - trajectory_time[0]

            for i in xrange(planning_response.trajectory.shape[0]):
                jt_p = JointTrajectoryPoint()
                jt_p.time_from_start = rospy.Duration(trajectory_time[i])
                jt_p.positions = planning_response.trajectory[i, 0:6]
                jt.points.append(jt_p)

            return jt
コード例 #8
0
    def plan_robot_motion(self, dxf_points, sines):
        self.dxf_points = dxf_points
        self.sines = sines
        waypoints = []
        message = rospy.wait_for_message("/robot_status", RobotStatus)
        joint_state = rospy.wait_for_message("/joint_states", JointState)

        while (message.in_motion.val == 1):
            message = rospy.wait_for_message("/robot_status", RobotStatus)
        #self.move_group.clear_pose_targets()
        print("hello")
        moveit_robot_state = RobotState()
        moveit_robot_state.joint_state = joint_state
        self.move_group.set_start_state(moveit_robot_state)
        #waypoints.append(self.move_group.get_current_pose().pose)
        #wpose = self.move_group.get_current_pose().pose
        #waypoints.append(wpose)
        #state = self.robot.get_current_state()
        #self.move_group.set_start_state(state)

        for i in range(len(dxf_points)):
            pose_goal = Pose()
            rpy = [math.pi, 0.0, sines[i] - math.pi / 2]
            print(rpy)
            R_result = rox.rpy2R(rpy)
            quat = rox.R2q(R_result)
            print(quat)
            pose_goal.orientation.w = 0.0
            pose_goal.orientation.x = quat[1]
            pose_goal.orientation.y = quat[2]
            pose_goal.orientation.z = 0.0
            #20- sets setpoint in middle of dxf file for robot y axis
            #middle of dxf y axis is 0, so no centering needed here
            x_val = (20 - dxf_points[i][0]) * 0.0254
            y_val = dxf_points[i][1] * 0.0254
            pose_goal.position.x = 0.8 + y_val
            pose_goal.position.y = x_val
            pose_goal.position.z = 0.3
            print(pose_goal)

            waypoints.append(pose_goal)
        """
        euclidean_distances=[]
        for i in range(1,len(waypoints)):
            distance=pow(pow(waypoints[i].position.x-waypoints[i-1].position.x,2)+pow(waypoints[i].position.y-waypoints[i-1].position.y,2)+pow(waypoints[i].position.z-waypoints[i-1].position.z,2),0.5)
            print(distance)
            euclidean_distances.append(distance)
        
        error_code=None
        """
        (plan, fraction) = self.move_group.compute_cartesian_path(
            waypoints,  # waypoints to follow
            0.01,  # eef_step
            0.0)  # jump_threshold

        print(type(plan))
        #self.scene.motion_plan_request
        replan_value = 0
        while (replan_value < 3 and fraction < 1.0):
            print(fraction)
            (plan, fraction) = self.move_group.compute_cartesian_path(
                waypoints,  # waypoints to follow
                0.01,  # eef_step
                0.0)  # jump_threshold
            replan_value += 1

            print("WARNING Portion of plan failed, replanning")
        if (replan_value > 2):
            return 0, 0, 0
        #print(len(euclidean_distances))
        #print(len(plan.joint_trajectory.points))
        #print(waypoints[0])

        #print(self.kdl_kin.forward(plan.joint_trajectory.points[0].positions))
        #print(self.kdl_kin.forward(plan.joint_trajectory.points[0].positions).item(3))
        #print(self.kdl_kin.forward(plan.joint_trajectory.points[0].positions).item(7))
        #print(self.kdl_kin.forward(plan.joint_trajectory.points[0].positions).item(11))
        #print(plan.joint_trajectory.points)
        total_distance = 0
        distances = []
        for i in range(1, len(plan.joint_trajectory.points)):
            old_cartesian = self.kdl_kin.forward(
                plan.joint_trajectory.points[i - 1].positions)
            new_cartesian = self.kdl_kin.forward(
                plan.joint_trajectory.points[i].positions)
            distance = pow(
                pow(new_cartesian.item(3) - old_cartesian.item(3), 2) +
                pow(new_cartesian.item(7) - old_cartesian.item(7), 2) +
                pow(new_cartesian.item(11) - old_cartesian.item(11), 2), 0.5)
            distances.append(distance)
            total_distance += distance
            #new_time=plan.joint_trajectory.points[i].time_from_start.to_sec()+(distance/self.speed)
            #old_time=plan.joint_trajectory.points[i].time_from_start.to_sec()
            #print("new time")
            #print(new_time)
            #print(distance/self.speed)
            #print(old_time)
            #if(new_time > old_time):
            #    plan.joint_trajectory.points[i].time_from_start.from_sec(new_time)
            #else:

            #    print("Error, speed faster than possible execution time")

        print(total_distance)
        print(distances)
        total_time = plan.joint_trajectory.points[-1].time_from_start.to_sec()
        print(total_time)
        times = []
        for i in distances:
            new_time = (i / total_distance) * total_time
            times.append(new_time)
        """
        if(new_timestamp > old_timestamp)
        next_waypoint->time_from_start.fromSec(new_timestamp);
        else
        {
            //ROS_WARN_NAMED("setAvgCartesianSpeed", "Average speed is too fast. Moving as fast as joint constraints allow.");
        }"""
        #print point.time_from_start.secs
        #for i in range(len(plan.joint_trajectory.points)-1):
        #   print("time between points:\n")
        #    print(plan.joint_trajectory.points[i+1].time_from_start.nsecs-plan.joint_trajectory.points[i].time_from_start.nsecs)
        #for i in range(1,len(plan.joint_trajectory.points)-1):
        #    plan.joint_trajectory.points[i].velocities=[-0.1,0.05,0.11,0.00000001,-0.05,0.2]

        #plan=self.move_group.retime_trajectory(moveit_robot_state,plan,velocity_scaling_factor=1.0, algorithm="iterative_spline_parameterization")
        if (self.display):
            self.display_robot_trajectory(plan)
        #self.actiongoal= control_msgs.msg.FollowJointTrajectoryActionGoal()
        self.goal = control_msgs.msg.FollowJointTrajectoryGoal()
        #self.actiongoal.header=std_msgs.msg.Header()
        self.goal.trajectory.joint_names = joint_state.name
        #self.goal.trajectory.points.resize(len(plan.joint_trajectory.points))
        traj = Trajectory()
        time = 0.01
        traj.add_point(plan.joint_trajectory.points[0].positions, time)
        #time=0.0
        for i in range(1, len(plan.joint_trajectory.points)):
            time += times[i - 1]
            traj.add_point(plan.joint_trajectory.points[i].positions, time)

        #traj.start()
        #traj.wait(15.0)
        """
            trajectory_point=trajectory_msgs.msg.JointTrajectoryPoint()
            
            trajectory_point.positions=plan.joint_trajectory.points[i].positions
            
            trajectory_point.velocities=plan.joint_trajectory.points[i].velocities
            #trajectory_point.accelerations=plan.joint_trajectory.points[i].accelerations
            trajectory_point.time_from_start=plan.joint_trajectory.points[i].time_from_start
            
            self.goal.trajectory.points.append(trajectory_point)
        
        print(len(plan.joint_trajectory.points))
        
        
        self.actiongoal.goal=self.goal
        self.followjointaction.publish(self.actiongoal)
        print("published goal")
        """
        return plan, fraction, waypoints
コード例 #9
0
 def rpy_to_quaternion(self, rpy, dtype=np.float64):
     return self.q_to_quaternion(rox.R2q(rox.rpy2R(rpy)), dtype)
コード例 #10
0
 def R_to_quaternion(self, R, dtype=np.float64):
     return self.q_to_quaternion(rox.R2q(R), dtype)
def first_half(input, num_iter):

    # stop the active RAPID program
    rapid.stop()
    # reset the pointer to main
    rapid.resetpp()
    print 'first half'
    print 'reset PP to main'
    time.sleep(2)
    # start the RAPID program
    rapid.start()

    # determine if robot has reached the initial configuration
    tag = True
    while tag:
        res, state = egm.receive_from_robot(.1)
        if res:
            #print np.fabs(sum(np.rad2deg(state.joint_angles)) - sum(init))
            if np.fabs(sum(state.joint_angles) - sum(init)) < 1e-4:
                tag = False

    time.sleep(1)

    # out is composed of 5 velocity and 1 force in z
    out = np.zeros((6, n))
    force_out = np.zeros((1, n))
    # pos of eef
    eef_pos = np.zeros((3, n))
    # orientation of eef (quaternion)
    eef_orien = np.zeros((4, n))
    # timestamp
    tim = np.zeros((1, n))

    q_hat = np.zeros((6, 1))
    qhat_dot = np.zeros((6, 1))
    # for observer k should be symmetric and positive definite
    kl = 0.5

    ### drain the EGM buffer ###
    for i in range(1000):
        res, state = egm.receive_from_robot(.1)

    time.sleep(2)

    cnt = 0
    step_done = False
    while cnt < n:
        # receive EGM feedback
        res, state = egm.receive_from_robot(.1)

        if not res:
            continue

        q_new = np.deg2rad(state.joint_angles)

        # step-over
        if not step_done:
            print '--------start step-over motion--------'
            # do step-over of 0.25 mm in +x in world frame
            # current eef pose
            pose_cur = rox.fwdkin(abb_robot, q_new)
            pose_cur.p[0] = pose_cur.p[0] + num_iter * 2 * step_over
            # solve for inverse kinematics and pick the one that is closest to current configuration
            sol = rox.robot6_sphericalwrist_invkin(abb_robot, pose_cur, q_new)
            try:
                tar = sol[0]  # raise exception if no solution
            except:
                tar = q_new
            # move to the new position after step-over
            egm.send_to_robot(tar)
            step_done = True

            q_new = tar
            ### drain the EGM buffer, or it will use the obsolete EGM feedback###
            for i in range(1000):
                res, state = egm.receive_from_robot(.1)

            print '--------step-over motion done--------'
            time.sleep(2)

# forward kinematics to calculate current position of eef
        pose = rox.fwdkin(abb_robot, q_new)
        R = pose.R
        Fd0 = 50
        if pose.p[2] >= pos_obj:
            F = 0
            v_z = Kp * 30 * (F - Fd0)  #-Ki*(z-z_ref)-Kd*acce#-Ki*pos
            # formalize entire twist
            spatial_velocity_command = np.array([0, 0, 0, 0, 0, v_z])
        else:
            F = -k * (pose.p[2] - pos_obj)
            if F < Fdz - 0.5 and cnt == 0:
                v_z = Kp * (F - Fdz)  #-Ki*(z-z_ref)-Kd*acce#-Ki*pos
                # formalize entire twist
                spatial_velocity_command = np.array([0, 0, 0, 0, 0, v_z])
            else:
                # formalize entire twist
                # nominal input composed of F and v
                spatial_velocity_command = input[:, cnt]

                v_z = Kp * (F - spatial_velocity_command[5])
                # nominal input only contains v
                spatial_velocity_command[5] = v_z
                # approximation of joint velocity
                #q_new = np.deg2rad(state.joint_angles)

                ######### change here, use observer instead of approximation to calculate q_dot ########
                if cnt == 0:
                    q_hat = q_new
                qhat_dot = joints_vel + kl * (q_new - q_hat)

                #q_dot = (q_new - q_pre)/delta_t

                J = rox.robotjacobian(abb_robot, q_new)
                # estimate velocity
                v_est = J.dot(qhat_dot)
                # formalize the nominal output composed of F and v
                out[:, cnt] = np.append(v_est[0:5], F)

                force_out[:, cnt] = F

                eef_pos[:, cnt] = pose.p

                R = pose.R
                quat = rox.R2q(R)
                eef_orien[:, cnt] = quat
                tim[0, cnt] = time.time()
                cnt = cnt + 1

        print F
        # solve for joint velocity
        # Jacobian inverse
        J = rox.robotjacobian(abb_robot, q_new)
        joints_vel = np.linalg.pinv(J).dot(spatial_velocity_command)

        # QP
        #joints_vel = quadprog.compute_joint_vel_cmd_qp(q_new, spatial_velocity_command)

        # commanded joint position setpoint to EGM
        q_c = q_new + joints_vel * delta_t
        egm.send_to_robot(q_c)
        # joint angle at previous time step

        ######### change here ########
        q_hat = q_hat + qhat_dot * delta_t

    error = out - desired
    # flip the error
    err_flip = np.fliplr(error)
    print np.linalg.norm(error, 'fro')

    return out, err_flip, np.linalg.norm(
        error, 'fro'), force_out, eef_pos, eef_orien, tim
コード例 #12
0
def first_half(input, num_iter):

    # stop the active RAPID program
    #rapid.stop()
    # reset the pointer to main
    #rapid.resetpp()
    print 'first half'
    print 'reset PP to main'
    time.sleep(5)
    # start the RAPID program
    #rapid.start()

    # determine if robot has reached the initial configuration
    tag = True
    while tag:
        res, state = egm.receive_from_robot(.1)
        if res:
            #print np.fabs(sum(np.rad2deg(state.joint_angles)) - sum(init))
            if np.fabs(sum(np.rad2deg(state.joint_angles)) - sum(init)) < 1e-4:
                tag = False

    time.sleep(1)

    # out is composed of 5 velocity and 1 force in z
    out = np.zeros((6, n))
    force_out = np.zeros((6, n))
    # pos of eef
    eef_pos = np.zeros((3, n))
    # orientation of eef (quaternion)
    eef_orien = np.zeros((4, n))
    # timestamp
    tim = np.zeros((1, n))

    ############### change ################ or there will be errors that q_pre referred before assigned
    #q_pre = np.deg2rad(state.joint_angles)
    q_hat = np.zeros((6, 1))
    qhat_dot = np.zeros((6, 1))
    # for observer k should be symmetric and positive definite
    kl = 0.1

    ### drain the force sensor buffer ###
    count = 0
    while count < 1000:
        flag, ft = netft.read_ft_streaming(.1)
        #print ft[5]
        count = count + 1
    ### drain the EGM buffer ###
    for i in range(1000):
        res, state = egm.receive_from_robot(.1)
    # substract the initial force for bias
    flag, ft = netft.read_ft_streaming(.1)
    F0 = ft[5]
    print F0
    time.sleep(3)

    cnt = 0
    step_done = False
    while cnt < n:
        #t_pre = time.time()
        # receive EGM feedback
        res, state = egm.receive_from_robot(.1)

        if not res:
            continue

        q_new = state.joint_angles

        # step-over
        if not step_done:
            print '--------start step-over motion--------'
            # do step-over of 0.25 mm in +x in world frame
            # current eef pose
            pose_cur = rox.fwdkin(abb_robot, q_new)
            pose_cur.p[0] = pose_cur.p[0] + num_iter * 2 * step_over
            # solve for inverse kinematics and pick the one that is closest to current configuration
            sol = rox.robot6_sphericalwrist_invkin(abb_robot, pose_cur, q_new)
            try:
                tar = sol[0]  # raise exception if no solution
            except:
                tar = q_new
            # move to the new position after step-over
            egm.send_to_robot(tar)
            step_done = True

            q_new = tar
            ### drain the EGM buffer, or it will use the obsolete EGM feedback###
            for i in range(1000):
                res, state = egm.receive_from_robot(.1)

            print '--------step-over motion done--------'
            time.sleep(2)

# forward kinematics to calculate current position of eef
        pose = rox.fwdkin(abb_robot, q_new)
        R = pose.R
        flag, ft = netft.read_ft_streaming(.1)
        # map torque/force from sensor frame to base frame
        T_b = np.matmul(R, ft[0:3])
        F_b = np.matmul(R, ft[3:None])
        F = F_b[2]  # - F0# first three torques and then three forces

        # start motion in y direction when robot barely touches coupon
        Fd0 = 50  # this should be equal to the Fdz[0]
        if F < Fd0 - 0.1 and cnt == 0:
            z = pose.p[2]
            # account for the robot base and length of tool
            z = z + 0.026 - 0.18 + 0.00353
            # will shake if gain too large, here use 0.0002
            v_z = Kp * 10 * (F - Fd0)  #-Ki*(z-z_ref)-Kd*acce#-Ki*pos
            # formalize entire twist
            spatial_velocity_command = np.array([0, 0, 0, 0, 0, v_z])
        else:
            # formalize entire twist
            # nominal input composed of F and v
            spatial_velocity_command = input[:,
                                             cnt]  #np.array([0, 0, 0, vdx, 0, Fd])

            z = pose.p[2]
            # account for the robot base and length of tool
            z = z + 0.026 - 0.18 + 0.00353
            v_z = Kp * (F - spatial_velocity_command[5]
                        )  #-Ki*(z-z_ref)-Kd*acce#-Ki*pos
            # nominal input only contains v
            spatial_velocity_command[5] = v_z
            # approximation of joint velocity
            #q_new = np.deg2rad(state.joint_angles)

            ######### change here, use observer instead of approximation to calculate q_dot ########
            if cnt == 0:
                q_hat = q_new
            qhat_dot = joints_vel + kl * (q_new - q_hat)

            #q_dot = (q_new - q_pre)/delta_t

            J = rox.robotjacobian(abb_robot, q_new)
            # estimate velocity
            v_est = J.dot(qhat_dot)
            # formalize the nominal output composed of F and v
            out[:, cnt] = np.append(v_est[0:5], F)

            force_out[:, cnt] = np.concatenate((T_b, F_b), axis=0)

            eef_pos[:, cnt] = pose.p
            #eef_pos[2, cnt] = z

            R = pose.R
            quat = rox.R2q(R)
            eef_orien[:, cnt] = quat
            tim[0, cnt] = time.time()
            cnt = cnt + 1

        print F
        # solve for joint velocity
        # Jacobian inverse
        #J = rox.robotjacobian(abb_robot, q_new)
        #joints_vel = np.linalg.pinv(J).dot(spatial_velocity_command)

        # emergency stop if force too large
        if abs(F) > 2000:
            spatial_velocity_command = np.array([0, 0, 0, 0, 0, 0])
            print "force too large, stop..."

        # QP
        joints_vel = quadprog.compute_joint_vel_cmd_qp(
            q_new, spatial_velocity_command)

        # commanded joint position setpoint to EGM
        q_c = q_new + joints_vel * delta_t
        egm.send_to_robot(q_c)
        # joint angle at previous time step
        #q_pre = q_new

        ############ change here ##############
        # make the time interval 0.004 s
        #t_new = time.time()
        #if t_new - t_pre < delta_t:
        #    time.sleep(delta_t - t_new + t_pre)

        ######### change here ########
        q_hat = q_hat + qhat_dot * delta_t

    # interpolate to filter the output
    t_inter = np.arange(0, n * delta_t, delta_t)
    # interpolate each row of output
    for i in range(6):
        y = out[i, :]
        tck = interpolate.splrep(t_inter, y,
                                 s=0.01)  # s = 0 means no interpolation
        ynew = interpolate.splev(t_inter, tck, der=0)
        out[i, :] = ynew

    error = out - desired
    # flip the error
    err_flip = np.fliplr(error)
    print np.linalg.norm(error, 'fro')

    return out, err_flip, np.linalg.norm(
        error, 'fro'), force_out, eef_pos, eef_orien, tim