import numpy as np from general_tools.utils import get_root, get_max_root ROOT = get_root("internn") import sys sys.path.append(str(ROOT)) sys.path.append(str(ROOT / "data")) print(sys.path) from internn_utils import * from pytorch_utils import * from sen_loader import get_text from error_measures import * eps = 1e-7 def sample_to_text(sample, output): text = [s.lower() for s in sample["text"]] out_text = [ get_text(o.argmax(-1))[:sample["length"][i]] for i, o in enumerate(output) ] return text, out_text def cer_index(sample, output, index, **kwargs): """ Args: sample: output: index: 2D array, Batch x indices of preds
import warnings from pathlib import Path import yaml from itertools import product import sys from general_tools.utils import get_root LM = get_root("lm") sys.path.append(str(LM / "slurm")) import gen from subprocess import Popen baseline_configs = ["00_master.yaml"] NAME = "02_REDO" baseline_configs = [(LM / "configs") / b for b in baseline_configs] variation_dict = { "experiment_type": ["vgg_embeddings"], "lm_model_path": ['lm/results/BASE/BERT_EXPERIMENT_TYPE.pt'], "embedding_norm": ["softmax"], "train_mode2": [ "single character", "multicharacter USE_CORRECT_CHAR_100", "multicharacter MEAN_EMBEDDING_20 RANDOM_CHAR_20 USE_CORRECT_CHAR_20", "multicharacter MEAN_EMBEDDING_80 USE_CORRECT_CHAR_20", "multicharacter RANDOM_CHAR_80 USE_CORRECT_CHAR_20" ] } baseline_dict = {"max_intensity": 0} baseline_dict = False def cartesian_product(inp):