コード例 #1
0
    dir_output_name_case = dir_output_name+ '/' + dirs + '/'
    if not os.path.exists(dir_output_name_case):
        os.mkdir(dir_output_name_case)

    for dir in natsorted(os.listdir((path_input_aux + '/' + dirs))):
        print(dir)
        print (''.join('*' * temperature_parameters[2]))

        dir_output_name_case_exp = dir_output_name_case + '/' + dir
        if not os.path.exists(dir_output_name_case_exp):
            os.mkdir(dir_output_name_case_exp)

        output = open(dir_output_name_case_exp + '/' + 'parameters.pkl', 'wb')
        pickle.dump({'temperature_parameters': temperature_parameters, 'no_simulations': no_simulations,
                     'thermalize_time': thermalize_time}, output)
        output.close()

        for entity in natsorted(os.listdir((path_input_aux + dirs + '/' + dir))):
            sub_dir_output_name = dir_output_name_case_exp + '/' + entity + '/'
            if not os.path.exists(sub_dir_output_name):

                J = to_normalize(np.loadtxt(path_input_aux + dirs + '/' + dir + '/' + entity + '/' + default_Jij_name, delimiter=','))

                start_time = time.time()
                simulated_fc, critical_temperature, E, M, S, H = generalized_ising(J,
                                                                                   temperature_parameters=temperature_parameters,
                                                                                   no_simulations=no_simulations,
                                                                                   thermalize_time=thermalize_time)
                print(time.time() - start_time)
                os.mkdir(sub_dir_output_name)
                to_save_results(temperature_parameters, J, E, M, S, H, simulated_fc, critical_temperature, sub_dir_output_name)
コード例 #2
0
ファイル: phi_sim_save.py プロジェクト: jrudascas/brainlab
def phi_sim_save(size, output_directory,count,temperature_parameters=(-1,5,50), no_simulations=500, thermalize_time=0.3):


    import numpy as np
    from generalize_ising_model.core import generalized_ising
    import time
    from generalize_ising_model.ising_utils import to_save_results, makedir, \
        to_generate_randon_graph, save_graph
    from generalize_ising_model.phi_project.utils import to_estimate_tpm_from_ising_model, to_calculate_mean_phi, \
        to_save_phi

    makedir(output_directory + '/phi/')
    makedir(output_directory + '/ising/')

    size = int(size)
    output_path_phi = output_directory + '/' + 'phi/' + str(count) + '/'
    output_path_ising = output_directory + '/' + 'ising/' + str(count) + '/'

    if makedir(output_path_ising) and makedir(output_path_phi):

        J = save_graph(output_path_phi + 'Jij_' + str(count) + '.csv',
                       to_generate_randon_graph(size, isolate=False, weighted=True))

        # Ising Parameters
        temperature_parameters = temperature_parameters  # Temperature parameters (initial tempeture, final tempeture, number of steps)
        no_simulations = no_simulations  # Number of simulation after thermalization
        thermalize_time = thermalize_time  #

        start_time = time.time()
        print('Fitting Generalized Ising model for a ', size, ' by', size, ' random matrix.')
        simulated_fc, critical_temperature, E, M, S, H, spin_mean = generalized_ising(J,
                                                                                      temperature_parameters=temperature_parameters,
                                                                                      no_simulations=no_simulations,
                                                                                      thermalize_time=thermalize_time,
                                                                                      temperature_distribution='log')

        to_save_results(temperature_parameters, J, E, M, S, H, simulated_fc, critical_temperature, output_path_ising,
                        temperature_distribution='log')
        print('It took ', time.time() - start_time, 'seconds to fit the generalized ising model')

        print('Computing Phi for random ' + str(size) + ' by ' + str(size) + ' matrix')

        ts = np.logspace(temperature_parameters[0], np.log10(temperature_parameters[1]), temperature_parameters[2])

        phi_temperature, phi_sum, phi_sus = [], [], []
        cont = 0

        start_time = time.time()

        for t in ts:
            # print('Temperature: ' + str(t))
            tpm, fpm = to_estimate_tpm_from_ising_model(J, t)
            phi_, phiSum, phiSus = to_calculate_mean_phi(fpm, spin_mean[:, cont], t)
            phi_temperature.append(phi_)
            phi_sum.append(phiSum)
            phi_sus.append(phiSus)

            cont += 1

        to_save_phi(ts, phi_temperature, phi_sum, phi_sus, S, critical_temperature, size, output_path_phi)

        print('It takes ', time.time() - start_time, 'seconds to compute phi for a ', size, 'by', size,
              ' random matrix.')
    else:
        print(str(count) + ' is already done!')
コード例 #3
0
ファイル: run.py プロジェクト: soheilbr82/brain_lab
            i_l.append(v - 1)
            j_l.append(w - 1)

    J = 1. / D[i_l, j_l]
    J[J == np.inf] = 0
    J[J == -np.inf] = 0
    J = J / np.max(J)
    J = np.reshape(J, (len(value), len(value)))

    J = to_normalize(J)

    start_time = time.time()
    print('Fitting Generalized ising model')
    simulated_fc, critical_temperature, E, M, S, H, spin_mean = generalized_ising(
        J,
        temperature_parameters=temperature_parameters,
        no_simulations=no_simulations,
        thermalize_time=thermalize_time,
        temperature_distribution='log')

    sub_dir_output_name = dir_output_name + '/' + key + '/'
    makedir(dir_output_name + '/' + key)
    to_save_results(temperature_parameters, J, E, M, H, S, simulated_fc,
                    critical_temperature, sub_dir_output_name)
    print(time.time() - start_time)

    start_time = time.time()

    print('Computing Phi for: ' + key)
    #ts = np.linspace(temperature_parameters[0], temperature_parameters[1], temperature_parameters[2])
    ts = np.logspace(temperature_parameters[0],
                     np.log10(temperature_parameters[1]),
コード例 #4
0
dir_output_name = path_input + 'simulation'
if not os.path.exists(dir_output_name):
    os.mkdir(dir_output_name)

path_input_aux = path_input + 'data/'
for dirs in natsorted(os.listdir(path_input_aux)):
    dir_output_name_case = dir_output_name + '/' + dirs + '/'
    print(dirs)

    J = to_normalize(
        np.loadtxt(path_input_aux + dirs + '/' + default_Jij_name,
                   delimiter=','))

    temperature_parameters = (
        0.002, 3, no_temperature
    )  # Temperature parameters (initial tempeture, final tempeture, number of steps)

    start_time = time.time()
    simulated_fc, critical_temperature, E, M, S, H = generalized_ising(
        J,
        temperature_parameters=temperature_parameters,
        n_time_points=no_simulations,
        thermalize_time=thermalize_time,
        phi_variables=False)
    print(time.time() - start_time)
    os.mkdir(dir_output_name_case)
    save_results(temperature_parameters, J, E, M, S, H, simulated_fc,
                 critical_temperature, dir_output_name_case)

    gc.collect()