import numpy as np import matplotlib.pyplot as plt from sklearn import svm import os os.chdir( '/Users/ChrisErnst/Development/Perception-Challenge-Udacity-RoboticsND-Project3/' ) from generate_clusters import cluster_gen np.random.seed(424) # Change the number to generate a different cluster. This 'seeds' the generator # for the generate_clusters.py file n_clusters = 8 clusters_x, clusters_y, labels = cluster_gen(n_clusters) # Convert to a training dataset in sklearn format X = np.float32( (np.concatenate(clusters_x), np.concatenate(clusters_y))).transpose() y = np.float32((np.concatenate(labels))) # Create an instance of SVM and fit the data. We're using a linear delineation ker = 'linear' # also try 'rbf' which is the default. # It must be one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable svc = svm.SVC(kernel=ker).fit(X, y) # Create a mesh that we will use to colorfully plot the decision surface # Plotting Routine courtesy of: http://scikit-learn.org/stable/auto_examples/svm/plot_iris.html#sphx-glr-auto-examples-svm-plot-iris-py # Note: this coloring scheme breaks down at > 7 clusters or so
""" import numpy as np import matplotlib.pyplot as plt from sklearn import svm import os os.chdir('/Users/ChrisErnst/Development/Perception-Challenge-Udacity-RoboticsND-Project3/') from generate_clusters import cluster_gen np.random.seed(424) # Change the number to generate a different cluster. This 'seeds' the generator # for the generate_clusters.py file n_clusters = 8 clusters_x, clusters_y, labels = cluster_gen(n_clusters) # Convert to a training dataset in sklearn format X = np.float32((np.concatenate(clusters_x), np.concatenate(clusters_y))).transpose() y = np.float32((np.concatenate(labels))) # Create an instance of SVM and fit the data. We're using a linear delineation ker = 'linear' # also try 'rbf' which is the default. # It must be one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable svc = svm.SVC(kernel=ker).fit(X, y) # Create a mesh that we will use to colorfully plot the decision surface # Plotting Routine courtesy of: http://scikit-learn.org/stable/auto_examples/svm/plot_iris.html#sphx-glr-auto-examples-svm-plot-iris-py # Note: this coloring scheme breaks down at > 7 clusters or so