windon_layouts = DEgen.eeg_windonlayouts_per_class(graph,cutout) windon_capacities = pd.DataFrame(index=graph.nodes()) for turbine_items in windon_layouts: name = turbine_items[0]["onshore"] turbine_cap = np.array(vresutils.reatlas.turbineconf_to_powercurve_object(name)["POW"]).max() print(name,turbine_cap) windon_capacities[name] = turbine_items[1].sum(axis=(1,2))*turbine_cap/1000. windon_caps = windon_capacities.sum(axis=1) windon_caps.describe(),windon_caps.sum() (generation.windon.max()/windon_caps).describe() windoff_layouts = DEgen.eeg_windofflayouts_per_class(graph,cutout) windoff_capacities = pd.DataFrame(index=graph.nodes()) for i,turbine_items in enumerate(windoff_layouts): name = turbine_items[0]["offshore"] turbine_cap = np.array(vresutils.reatlas.turbineconf_to_powercurve_object(name)["POW"]).max() print(name,turbine_cap) #add an index to name to avoid duplication of names windoff_capacities[name+"-" + str(i)] = turbine_items[1].sum(axis=(1,2))*turbine_cap/1000. windoff_capacities.sum() windoff_caps = windoff_capacities.sum(axis=1) windoff_caps.describe(),windoff_caps.sum() (generation.windoff.max()/windoff_caps).describe()
windon_capacities = pd.DataFrame(index=graph.nodes()) for turbine_items in windon_layouts: name = turbine_items[0]["onshore"] turbine_cap = np.array( vresutils.reatlas.turbineconf_to_powercurve_object(name)["POW"]).max() print(name, turbine_cap) windon_capacities[name] = turbine_items[1].sum( axis=(1, 2)) * turbine_cap / 1000. windon_caps = windon_capacities.sum(axis=1) windon_caps.describe(), windon_caps.sum() (generation.windon.max() / windon_caps).describe() windoff_layouts = DEgen.eeg_windofflayouts_per_class(graph, cutout) windoff_capacities = pd.DataFrame(index=graph.nodes()) for i, turbine_items in enumerate(windoff_layouts): name = turbine_items[0]["offshore"] turbine_cap = np.array( vresutils.reatlas.turbineconf_to_powercurve_object(name)["POW"]).max() print(name, turbine_cap) #add an index to name to avoid duplication of names windoff_capacities[name + "-" + str(i)] = turbine_items[1].sum( axis=(1, 2)) * turbine_cap / 1000. windoff_capacities.sum() windoff_caps = windoff_capacities.sum(axis=1) windoff_caps.describe(), windoff_caps.sum()