def gen_m(config): num = config['TOTAL_NUM'] features = pre_process_config(config['FEATURES']) # print(features) theta1_list = gen_theta(features['theta1'],num) theta2_list = gen_theta(features['theta2'],num) theta3_list = gen_theta(features['theta3'],num) theta4_list = gen_theta(features['theta4'],num) theta5_list = gen_theta(features['theta5'],num) theta6_list = gen_theta(features['theta6'],num) theta7_list = gen_theta(features['theta7'],num) theta8_list = gen_theta(features['theta8'],num) theta9_list = gen_theta(features['theta9'],num) k1_list = gen_theta(features['k1'],num) k2_list = gen_theta(features['k2'],num) season_list = [] noise_list = [] trend_list = [] for i in range(0,num): noise_generator = ng.NoiseGeneratorFactory().get_generator(None) trend_generator = tg.TrendGenerator() season_generator = sg.SeasonGeneratorFactory(theta5_list[i],theta3_list[i],theta4_list[i],k1_list[i],k2_list[i],forking_depth=7).get_generator(None) season = season_generator.gen_season() noise = noise_generator.gen(theta6_list[i],theta7_list[i],theta8_list[i],theta9_list[i],len(season[0])) trend = trend_generator.gen(theta1_list[i],theta2_list[i],len(season[0])) season_list.append(season) noise_list.append(noise) trend_list.append(trend) # print(noise[1].shape,trend[1].shape,season[1].shape) # print(noise[0].shape,trend[0].shape,season[0].shape) print(noise) print(trend) print(season) assembler = assem.AbstractAssembler(season_list,noise_list,trend_list) assembler.assemble() assembler.save(path=out_path)
import generator.trend_generator as tg import generator.noise_generator as ng import generator.season_generator as sg import matplotlib.pyplot as plt #==================================================================================== # Group1 # spike, beat, type1, type2, control noise level. season_generator = sg.NormalSeasonGenerator(10, 10, 200, drift_a=0, drift_f=0, forking_depth=7) noise_generator = ng.Gaussian() trend_generator = tg.TrendGenerator() season = season_generator.gen_season() length = len(season[0]) noise = [ noise_generator.gen(0, sigma, length) for sigma in np.linspace(0.5, 2, 100) ] trend = trend_generator.gen(0, 0, length) # assembler = assem.AssemblerWithAdditiveAnomalyInjector_v1(season,noise,trend,'noise',10e-7,0.2,a_type='spike') assembler = assem.AssemblerWithAdditiveAnomalyInjector_v1(season, noise, trend, 'noise', 10e-7,
def gen_v(config): config # season_generator = sg.SeasonGeneratorFactory(10,10,200,drift_a=0,drift_f=0,forking_depth=7,'vanish') noise_generator = ng.Gaussian() trend_generator = tg.TrendGenerator()